3D Bioplotter Research Papers
Crystallization-Induced Gelling as a Method to 4D Print Low-Water-Content Non-isocyanate Polyurethane Hydrogels
The use of three-dimensional (3D) printable hydrogels for biomedical applications has attracted considerable attention as a consequence of the ability to precisely define the morphology of the printed object, allowing patients’ needs to be targeted. However, the majority of hydrogels do not possess suitable mechanical properties to fulfill an adequate rheological profile for printability, and hence, 3D printing of cross-linked networks is challenging and normally requires postprinting modifications to obtain the desired scaffolds. In this work, we took advantage of the crystallization process of poly(ethylene glycol) to print non-isocyanate poly(hydroxyurethane) hydrogels with tunable mechanical properties. As a consequence of the…
3D Bioprinting of Engineered Tissue Flaps with Hierarchical Vessel Networks (VesselNet) for Direct Host-To-Implant Perfusion
Engineering hierarchical vasculatures is critical for creating implantable functional thick tissues. Current approaches focus on fabricating mesoscale vessels for implantation or hierarchical microvascular in vitro models, but a combined approach is yet to be achieved to create engineered tissue flaps. Here, millimetric vessel-like scaffolds and 3D bioprinted vascularized tissues interconnect, creating fully engineered hierarchical vascular constructs for implantation. Endothelial and support cells spontaneously form microvascular networks in bioprinted tissues using a human collagen bioink. Sacrificial molds are used to create polymeric vessel-like scaffolds and endothelial cells seeded in their lumen form native-like endothelia. Assembling endothelialized scaffolds within vascularizing hydrogels incites…
Three-Dimensional Printability of an ECM-Based Gelatin Methacryloyl (GelMA) Biomaterial for Potential Neuroregeneration
The current study introduces two novel, smart polymer three-dimensional (3D)-printable interpenetrating polymer network (IPN) hydrogel biomaterials with favorable chemical, mechanical, and morphological properties for potential applications in traumatic brain injury (TBI) such as potentially assisting in the restoration of neurological function through closure of the wound deficit and neural tissue regeneration. Additionally, removal of injury matter to allow for the appropriate scaffold grafting may assist in providing a TBI treatment. Furthermore, due to the 3D printability of the IPN biomaterials, complex structures can be designed and fabricated to mimic the native shape and structure of the injury sight, which can…
3D ink-printed, sintered porous silicon scaffolds for battery applications
The fabrication of 3D ink-printed and sintered porous Si scaffolds as electrode material for lithium-ion batteries is explored. A hierarchically-porous architecture consisting of channels (~220 μm in diameter) between microporous Si struts is created to accommodate the large volume change from Si (de)lithiation during electrochemical (dis)charging. The influence of sintering parameters on Si strut porosity and the resulting mechanical and electrochemical properties of the scaffolds are studied experimentally and computationally. Varying sintering temperatures (1150–1300 °C) and sintering times (1–16 h) the open porosity within the Si filaments can be tailored between 46 and 60%. Pore size (3–6 μm) and wall…
Alginate-based tissue-specific bioinks for multi-material 3D-bioprinting of pancreatic islets and blood vessels: A step towards vascularized pancreas grafts
Although allogeneic islet transplantation has been proposed as a therapy for type 1 diabetes, its success rate remains low. Disruption of both extracellular matrix (ECM) and dense vascular network during islets isolation are referred to as some of the main causes of their poor engraftment. Therefore, the recapitulation of the native pancreatic microenvironment and its prompt revascularization should be beneficial for long-term islet survival. In this study, we developed novel bioinks suitable for the microfluidic-assisted multi-material biofabrication of 3D porous pancreatic and vascular structures. The tissue-specific bioactivity was introduced by blending alginate either with pancreatic decellularized extracellular matrix powder (A_ECM)…
Novel Perspectives in Non-Invasive Diagnosis of Ailments through Analysis of Mechanical Wave Motion
The central theme of this dissertation is the observation that mechanical waves propagate and scatter at different velocities in biological tissues due to a difference in local material properties (such as viscosity and stiffness), due to the presence of inhomogeneities such as a blood vessel, an axon or a muscle filament. These scattered waves contain information about the characteristic stiffness, viscosity and the mechanical property inhomogeneity of the tissues through which they propagate; this information can aid in non-invasive diagnosis of disease and injury using novel quantitative techniques such as Insonification, Percussion and 1-Norm using Magnetic Resonance Elastography (MRE). The…
Fabrication of a bio-instructive scaffold conferred with a favorable microenvironment allowing for superior implant osseointegration and accelerated in situ vascularized bone regeneration via type H vessel formation
The potential translation of bio-inert polymer scaffolds as bone substitutes is limited by the lack of neovascularization upon implantation and subsequently diminished ingrowth of host bone, most likely resulted from the inability to replicate appropriate endogenous crosstalk between cells. Human umbilical vein endothelial cell-derived decellularized extracellular matrix (HdECM), which contains a collection of angiocrine biomolecules, has recently been demonstrated to mediate endothelial cells(ECs) – osteoprogenitors(OPs) crosstalk. We employed the HdECM to create a PCL (polycaprolactone)/fibrin/HdECM (PFE) hybrid scaffold. We hypothesized PFE scaffold could reconstitute a bio-instructive microenvironment that reintroduces the crosstalk, resulting in vascularized bone regeneration. Following implantation in a…
Development of bioinks for 3D printing microporous, sintered calcium phosphate scaffolds
Beta-tricalcium phosphate (β-TCP)-based bioinks were developed to support direct-ink 3D printing-based manufacturing of macroporous scaffolds. Binding of the gelatin:β-TCP ink compositions was optimized by adding carboxymethylcellulose (CMC) to maximize the β-TCP content while maintaining printability. Post-sintering, the gelatin:β-TCP:CMC inks resulted in uniform grain size, uniform shrinkage of the printed structure, and included microporosity within the ceramic. The mechanical properties of the inks improved with increasing β-TCP content. The gelatin:β-TCP:CMC ink (25:75 gelatin:β-TCP and 3% CMC) optimized for mechanical strength was used to 3D print several architectures of macroporous scaffolds by varying the print nozzle tip diameter and pore spacing during…
Bioprinting and In Vitro Characterization of an Eggwhite-Based Cell-Laden Patch for Endothelialized Tissue Engineering Applications
Three-dimensional (3D) bioprinting is an emerging fabrication technique to create 3D constructs with living cells. Notably, bioprinting bioinks are limited due to the mechanical weakness of natural biomaterials and the low bioactivity of synthetic peers. This paper presents the development of a natural bioink from chicken eggwhite and sodium alginate for bioprinting cell-laden patches to be used in endothelialized tissue engineering applications. Eggwhite was utilized for enhanced biological properties, while sodium alginate was used to improve bioink printability. The rheological properties of bioinks with varying amounts of sodium alginate were examined with the results illustrating that 2.0–3.0% (w/v) sodium alginate…
Microengineered perfusable 3D-bioprinted glioblastoma model for in vivo mimicry of tumor microenvironment
Many drugs show promising results in laboratory research but eventually fail clinical trials. We hypothesize that one main reason for this translational gap is that current cancer models are inadequate. Most models lack the tumor-stroma interactions, which are essential for proper representation of cancer complexed biology. Therefore, we recapitulated the tumor heterogenic microenvironment by creating fibrin glioblastoma bioink consisting of patient-derived glioblastoma cells, astrocytes, and microglia. In addition, perfusable blood vessels were created using a sacrificial bioink coated with brain pericytes and endothelial cells. We observed similar growth curves, drug response, and genetic signature of glioblastoma cells grown in our…
The effect of enhanced bone marrow in conjunction with 3D-printed PLA-HA in the repair of critical-sized bone defects in a rabbit model
Background: Traditionally, the iliac crest has been the most common harvesting site for autologous bone grafts; however, it has some limitations, including poor bone availability and donor-site morbidity. This study sought to explore the effect of enhanced bone marrow (eBM) in conjunction with three-dimensional (3D)-printed polylactide–hydroxyapatite (PLA-HA) scaffolds in the repair of critical-sized bone defects in a rabbit model. Methods: First, 3D-printed PLA-HA scaffolds were fabricated and evaluated using micro-computed tomography (µCT) and scanning electron microscopy (SEM). Twenty-seven New Zealand white rabbits were randomly divided into 3 groups (n=9 per group), and the defects were treated using 3D-printed PLA-HA scaffolds…
Bioactivity assessment of additively manufactured doped-HA composite scaffolds for bone tissue engineering
Composites are promising candidates for treating bone defects, but manufacturing of composite scaffolds is challenging. This study aimed to fabricate composite scaffolds based on polycaprolactone (PCL) and doped Hydroxyapatite (HA) via a single step melt extrusion additive manufacturing technique. Starting from the raw powder forms, the printed scaffolds were produced and then characterized for morphology, mechanical behavior and in vitro mineralization. MicroCT revealed the homogenous dispersion of ceramic particles in the PCL matrix. Also, SEM showed the ceramic particles on the surfaces of printed scaffolds. Furthermore, bioactivity assays confirmed the enhanced apatite deposit formation on composite scaffolds compared to PCL…
A 3D printed patient specific artificial outer ear model for use in auricle reconstruction surgery: a clinical feasibility study
Auricle reconstruction is a routine surgery in the field of Otolaryngology but the design of the reconstruction is based on the clinicians guess of the correct previous anatomy. Using additive manufacturing processes to build a model the surgeon can refer to may be a good substitute for conventional surgery. The quality of the framework replicating the three-dimensional architecture of the ear and precise sculpting of the anatomical structures are necessary in order to reach a desired outcome. In this work we present the workflow to produce an individualized 3D outer ear model for use in auricle reconstruction surgery and report…
MicroRNA-activated hydrogel scaffold generated by 3D printing accelerates bone regeneration
Bone defects remain a major threat to human health and bone tissue regeneration has become a prominent clinical demand worldwide. The combination of microRNA (miRNA) therapy with 3D printed scaffolds has always posed a challenge. It can mimic physiological bone healing processes, in which a biodegradable scaffold is gradually replaced by neo-tissue, and the sustained release of miRNA plays a vital role in creating an optimal osteogenic microenvironment, thus achieving promising bone repair outcomes. However, the balance between two key factors – scaffold degradation behavior and miRNA release profile – on osteogenesis and bone formation is still poorly understood. Herein,…
Optimized alginate-based 3D printed scaffolds as a model of patient derived breast cancer microenvironments in drug discovery
The cancer microenvironment influences tumor progression and metastasis and is pivotal to consider when designing in vivo-like cancer models. Current preclinical testing platforms for cancer drug development are mainly limited to 2D cell culture systems that poorly mimic physiological environments and traditional, low throughput animal models. The aim of this work was to produce a tunable testing platform based on 3D printed scaffolds (3DPS) with a simple geometry that, by extracellular components and response of breast cancer reporter cells, mimics patient-derived scaffolds (PDS) of breast cancer. Here, the biocompatible polysaccharide alginate was used as base material to generate scaffolds consisting…
Finite element analysis of the performance of additively manufactured scaffolds for scapholunate ligament reconstruction
Rupture of the scapholunate interosseous ligament can cause the dissociation of scaphoid and lunate bones, resulting in impaired wrist function. Current treatments (e.g., tendon-based surgical reconstruction, screw-based fixation, fusion, or carpectomy) may restore wrist stability, but do not address regeneration of the ruptured ligament, and may result in wrist functional limitations and osteoarthritis. Recently a novel multiphasic bone-ligament-bone scaffold was proposed, which aims to reconstruct the ruptured ligament, and which can be 3D-printed using medical-grade polycaprolactone. This scaffold is composed of a central ligament-scaffold section and features a bone attachment terminal at either end. Since the ligament-scaffold is the primary…
3D Printable and Biocompatible Iongels for Body Sensor Applications
Soft-ionic materials with biocompatibility and 3D printability are needed to develop next-generation devices to interface between electronic and biological signals. Herein, thermoreversible and biocompatible ionic liquid gels or iongels, which can be processed by direct ink writing are reported. The iongels are designed by taking advantage of polyvinyl alcohol/phenol interactions to gelify biocompatible cholinium carboxylate ionic liquids. The obtained iongels are stable, soft, and flexible materials (Young modulus between 14 and 70 kPa) with high ionic conductivity (1.8 × 10–2 S cm–1). Interestingly, they presented thermoreversible properties with gel–sol transitions ranging from 85 and 110 °C, which allows the iongel…
Patient-derived scaffolds as a drug-testing platform for endocrine therapies in breast cancer
Three-dimensional cell culture platforms based on decellularised patient-based microenvironments provide in vivo-like growth conditions allowing cancer cells to interact with intact structures and components of the surrounding tissue. A patient-derived scaffold (PDS) model was therefore evaluated as a testing platform for the endocrine therapies (Z)-4-Hydroxytamoxifen (4OHT) and fulvestrant as well as the CDK4/6-inhibitor palbociclib, monitoring the treatment responses in breast cancer cell lines MCF7 and T47D adapted to the patient-based microenvironments. MCF7 cells growing in PDSs showed increased resistance to 4OHT and fulvestrant treatment (100- and 20-fold) compared to 2D cultures. Quantitative PCR analyses of endocrine treated cancer cells in…
Recycled algae-based carbon materials as electroconductive 3D printed skeletal muscle tissue engineering scaffolds
Skeletal muscle is an electrically and mechanically active tissue that contains highly oriented, densely packed myofibrils. The tissue has self-regeneration capacity upon injury, which is limited in the cases of volumetric muscle loss. Several regenerative therapies have been developed in order to enhance this capacity, as well as to structurally and mechanically support the defect site during regeneration. Among them, biomimetic approaches that recapitulate the native microenvironment of the tissue in terms of parallel-aligned structure and biophysical signals were shown to be effective. In this study, we have developed 3D printed aligned and electrically active scaffolds in which the electrical…
Human Induced Pluripotent Stem Cell-Derived Neural Progenitor Cells Produce Distinct Neural 3D In Vitro Models Depending on Alginate/Gellan Gum/Laminin Hydrogel Blend Properties
Stable and predictive neural cell culture models are a necessary premise for many research fields. However, conventional 2D models lack 3D cell-material/-cell interactions and hence do not reflect the complexity of the in vivo situation properly. Here two alginate/gellan gum/laminin (ALG/GG/LAM) hydrogel blends are presented for the fabrication of human induced pluripotent stem cell (hiPSC)-based 3D neural models. For hydrogel embedding, hiPSC-derived neural progenitor cells (hiNPCs) are used either directly or after 3D neural pre-differentiation. It is shown that stiffness and stress relaxation of the gel blends, as well as the cell differentiation strategy influence 3D model development. The embedded…
Additively manufactured BaTiO3 composite scaffolds: A novel strategy for load bearing bone tissue engineering applications
Piezoelectric ceramics, such as BaTiO3, have gained considerable attention in bone tissue engineering applications thanks to their biocompatibility, ability to sustain a charged surface as well as improve bone cells’ adhesion and proliferation. However, the poor processability and brittleness of these materials hinder the fabrication of three-dimensional scaffolds for load bearing tissue engineering applications. For the first time, this study focused on the fabrication and characterisation of BaTiO3 composite scaffolds by using a multi-material 3D printing technology. Polycaprolactone (PCL) was selected and used as dispersion phase for its low melting point, easy processability and wide adoption in bone tissue engineering.…
Coupling machine learning with 3D bioprinting to fast track optimisation of extrusion printing
3D bioprinting, a paradigm shift in tissue engineering holds a promising perspective for regenerative medicine and disease modelling. 3D scaffolds are fabricated for subsequent cell seeding or incorporated directly to the bioink to create cell-laden 3D constructs. A plethora of factors relating to bioink properties, printing parameters and post print curing play a significant role in the optimisation of the printing process. Although qualitative evaluation of printability has been investigated largely, there is a paucity of studies on quantitative approaches to assess printability. Hence, this study explores machine learning as a novel tool to evaluate printability quantitatively and to fast…
Hierarchically-porous metallic scaffolds via 3D extrusion and reduction of oxide particle inks with salt space-holders
3D ink-extrusion of powders followed by sintering is an emerging additive manufacturing method capable of creating metallic microlattices. Here, we study the creation of hierarchically porous Fe or Ni scaffolds by 3D extrusion of 0/90° lattices from inks consisting of fine oxide powders (Fe2O3 or NiO, < 3 µm), coarse space-holder particles (CuSO4, < 45 µm) and a polymer binder within a solvent. After space-holder leaching and debinding of the lattices, a sintering step densifies the metallic Fe or Ni powders created by oxide reduction with H2, while maintaining the larger pores templated by the space-holder particles within the printed…
Spatial alignment of 3D printed scaffolds modulates genotypic expression in pre-osteoblasts
3D printing, an advent from rapid prototyping technology is emerging as a suitable solution for various regenerative engineering applications. In this study, blended gelatin-sodium alginate 3D printed scaffolds with different pore geometries were developed by altering the spatial alignment of even layered struts in the scaffolds. A significant difference in compression modulus and osteogenic expression due to the difference in spatial printing was demonstrated. Pore geometry was found to be more dominant than the compressive modulus of the scaffold in regulating osteogenic gene expression. A shift in pore geometry by at least 45° was critical for significant increase in osteogenic…
Integrative treatment of anti-tumor/bone repair by combination of MoS2 nanosheets with 3D printed bioactive borosilicate glass scaffolds
Malignant bone tumors have caused great obstacles and serious illnesses for tumor recurrence and difficulty in reconstructing and repairing large defects after tumorectomy. Additionally, long-term efficacy, satisfactory biocompatibility and excellent properties for anti-tumor agents are necessary in the biomedical field. To solve these problems, a novel idea has been proposed on building an integrative anti-tumor/bone repairing scaffold by covering photothermal therapy (PTT) composite MoS2-PLGA film on the surface of borosilicate bioactive glass (BG). In our study, the MoS2-integrated composite BG (BGM) scaffolds can rapidly and effectively elevate temperature, and they exhibited excellent photothermal stability, under 808 nm laser irradiation. Notably,…
3D ink-extrusion printing and sintering of Ti, Ti-TiB and Ti-TiC microlattices
Titanium metal matrix composite microlattices are fabricated using 3D ink extrusion printing and sintering. The inks consist of TiH2+TiB2 or TiH2+TiC powder blends to form (i) Ti-TiB composites by dehydrogenation and in situ reaction of Ti + TiB2 to form Ti + TiB and (ii) Ti-TiC composites, where TiC remains stable during the sintering process. Rapid densification of the printed powder blend is achieved during pressureless sintering in vacuum at 1200 °C between 1 and 4 h, due to the small Ti particle size available from dehydrogenation of micron-sized TiH2. Near-full density Ti-TiB and Ti-TiC is achieved within individual lattice…
High-temperature mechanical properties of γ/γ′ Co–Ni–W–Al superalloy microlattices
Cobalt-based superalloy microlattices were created via (i) three-dimensional-extrusion printing of inks containing a suspension of Co-, Ni- and W-oxide particles, (ii) H2-reduction of the oxides and sintering to a homogenous Co-Ni-W alloy, (iii) Al pack-cementation to deposit Al on the microlattice struts, followed by Al-homogenization. The resulting Co-(18–20)Ni-(5–6)W-(10–13)Al (at.%) microlattices, with 27–30% relative density and 350 μm diameter struts, display a peak in yield strength at 750°C, consistent with their γ/γ′ aged microstructure. Oxidation resistance is strongly improved compared to Al-free printed Co-Ni-W lattices, via the formation of an Al2O3 surface layer. However, the resulting Al depletion within the struts…
Extrusion-based printing of chitosan scaffolds and their in vitro characterization for cartilage tissue engineering
Researchers have looked to cartilage tissue engineering to address the lack of cartilage regenerative capability related to cartilage disease/trauma. For this, a promising approach is extrusion-based three-dimensional (3D) printing technique to deliver cells, biomaterials, and growth factors within a scaffold to the injured site. This paper evaluates the printability of chitosan scaffolds for a cartilage tissue engineering, with a focus on identifying the influence of drying technique implemented before crosslinking on the improvement of chitosan printability. First, the printability of chitosan with concentrations of 8%, 10%, and 12% (w/v) was evaluated and 10% chitosan was selected for further studies. Then,…
In vitro characterisation of 3D printed platelet lysate-based bioink for potential application in skin tissue engineering
Wounds impact millions of patients every year and represent a serious cause of morbidity and mortality worldwide, yet current treatment outcomes are far from ideal. Therapies based on delivery of multiple growth factors offer a promising approach for optimal wound management; however, their high production cost, low stability, and lack of effective delivery system limits their application in the clinic. Platelet lysate is a suitable, abundant and cost-effective source of growth factors that play an important role in the healing cascade. The aim of this current work is to develop an extrusion-based bioink consisting of platelet lysate (PL) and gelatin…
Solvent evaporation induced fabrication of porous polycaprolactone scaffold via low-temperature 3D printing for regeneration medicine researches
Liquid deposition modeling (LDM) is an evolving three-dimensional (3D) printing approach that mainly utilizes polymer solutions to enable the fabrication of biomedical scaffolds under mild conditions. A deep understanding of the rheological properties of polymer printing inks and the features of yielded scaffolds are critical for a successful LDM based fabrication of biomedical scaffolds. In this work, polymer printing inks comprised of Poly(epsilon-caprolactone) (PCL), sodium chloride (NaCl), and trichloromethane (CHCl3) were prepared. The rheological properties, including extrudability (shear stress, viscosity, and shear-thinning) and self-supporting ability (viscosity) of all printing inks were analyzed. Then printing performance was evaluated by measuring the…
Impact of cell density on the bioprinting of gelatin methacrylate (GelMA) bioinks
3D printing of cell laden bioinks has the potential to recapitulate the hierarchical and spatial complexity of native tissues. However, the addition of cells can alter physical properties of printable resins, which in turn may impede or induce cellular sedimentation or affect the printability and shape fidelity of the final construct. In this study we investigated these considerations by bioprinting gelatin methacrylate (GelMA) bioinks, loaded with various concentrations of mouse fibroblast cells (L929), using extrusion-based direct-write 3D printing (EDP). The impact of various cellular concentrations on viscosity, and temperature-driven gelation of GelMA was examined with a rheometer. The effect of…
A comprehensive study of acid and base treatment of 3D printed poly(ε-caprolactone) scaffolds to tailor surface characteristics
Poly(ε-caprolactone) (PCL) chain cleavage results in the formation of polar terminal species, comprising hydroxy and carboxyl groups that enhance surface hydrophilicity and enable subsequent biofunctionalization. However, the direct effects of various acidic and basic treatments on 3D printed PCL scaffolds have not been studied from a functional perspective. In this study, we comprehensively assessed the influence of acid (hydrochloric, HCl) and base (sodium hydroxide, NaOH) catalyzed hydrolysis across different conditions on various properties of 3D printed PCL scaffolds. Analyses included testing of physiochemical and mechanical properties, and assessment of rate and stability of surface-nucleating bioactive apatite-like minerals. HCl exposure resulted…
Mesoporous calcium silicate and titanium composite scaffolds via 3D-printing for improved properties in bone repair
Calcium silicate (CS) composite bone tissue engineering scaffolds were three-dimensionally printed using titanium metallic powders as the second strengthening phase for overcoming the inherent brittleness and fast degradability. In order to promote the sintering process of all composite scaffolds, mesoporous structure was further introduced into sol-gel-derived CS powders obtaining mesoporous CS (MCS) with larger surface area. The influences of mesoporous structure, sintering temperature and Ti content have been investigated through comparisons of the final scaffold composition, microstructure, compressive strength and in vitro stability. Results showed that CS matrix materials reacted with Ti could form less degradable CaTiO3 and TiC ceramic…
Three-dimensional printing of click functionalized, peptide patterned scaffolds for osteochondral tissue engineering
Osteochondral repair remains a significant clinical challenge due to the multiple tissue phenotypes and complex biochemical milieu in the osteochondral unit. To repair osteochondral defects, it is necessary to mimic the gradation between bone and cartilage, which requires spatial patterning of multiple tissue-specific cues. To address this need, we have developed a facile system for the conjugation and patterning of tissue-specific peptides by melt extrusion of peptide-functionalized poly(ε-caprolactone) (PCL). In this study, alkyne-terminated PCL was conjugated to tissue-specific peptides via a mild, aqueous, and Ru(II)-catalyzed click reaction. The PCL-peptide composites were then 3D printed by multimaterial segmented printing to generate…
Direct ink writing of dehydrofluorinated Poly(Vinylidene Difluoride) for microfiltration membrane fabrication
Here, a hybrid process for the fabrication of dehydrofluorinated PVDF (dPVDF) microfiltration (MF) membranes is presented. dPVDF was fabricated through the bulk modification of PVDF using ethylenediamine. To produce inks for direct ink writing (DIW), the dPVDF was dissolved in N,N-dimethyacetamide along with a pore-forming agent, poly(vinyl pyrrolidone) (PVP) (5–30 wt%, relative to dPVDF concentration). Membranes were produced by direct ink writing of the inks into continuous films – followed by non-solvent induced phase separation (NIPS). Attenuated total reflectance – Fourier transform infrared (ATR-FTIR) and Raman spectroscopies confirmed alkene moieties within the dPVDF polymer, resulting from the dehydrofluorination process. The…
Microstructure and compressive properties of 3D-extrusion-printed, aluminized cobalt-based superalloy microlattices
Cobalt-based superalloy microlattices with γ/γ′ microstructure are manufactured by combining two additive methods: ink-extrusion 3D-printing and pack-cementation surface alloying. First, a microlattice green structure is 3D-printed at ambient temperature from inks comprised of Co3O4, NiO, and WO3 powders, an elastomeric binder and solvents. Organic removal followed by oxide reduction under Ar-5% H2, sintering and homogenization at 1250 °C lead to a metallic microlattice with dense struts with uniform γ (fcc)-Co–22Ni–8W (at.%) composition. Second, aluminum is deposited on the strut surfaces via pack-cementation at 1000 °C, diffused at 1300 °C through the strut volume to achieve a uniform composition (Co–20Ni–6W–10Al or…
Osteoinductivity and biomechanical assessment of a 3D printed demineralized bone matrix-ceramic composite in a rat spine fusion model
We recently developed a recombinant growth factor-free bone regenerative scaffold composed of stoichiometric hydroxyapatite (HA) ceramic particles and human demineralized bone matrix (DBM) particles (HA-DBM). Here, we performed the first pre-clinical comparative evaluation of HA-DBM relative to the industry standard and established positive control, recombinant human bone morphogenetic protein-2 (rhBMP-2), using a rat posterolateral spinal fusion model (PLF). Female Sprague–Dawley rats underwent bilateral L4-L5 PLF with implantation of the HA-DBM scaffold or rhBMP-2. Fusion was evaluated using radiography and blinded manual palpation, while biomechanical testing quantified the segmental flexion-extension range-of-motion (ROM) and stiffness of the fused segments at 8-weeks postoperatively.…
Remote triggering of TGF-β/Smad2/3 signaling in human adipose stem cells laden on magnetic scaffolds synergistically promotes tenogenic commitmen
Injuries affecting load bearing tendon tissues are a significant clinical burden and efficient treatments are still unmet. Tackling tendon regeneration, tissue engineering strategies aim to develop functional substitutes that recreate native tendon milieu. Tendon mimetic scaffolds capable of remote magnetic responsiveness and functionalized magnetic nanoparticles (MNPs) targeting cellular mechanosensitive receptors are potential instructive tools to mediate mechanotransduction in guiding tenogenic responses. In this work, we combine magnetically responsive scaffolds and targeted Activin A type II receptor in human adipose stem cells (hASCs), under alternating magnetic field (AMF), to synergistically facilitate external control over signal transduction. The combination of remote triggering…
Kinetics of alloy formation and densification in Fe-Ni-Mo microfilaments extruded from oxide- or metal-powder inks
3D ink-extrusion of powders followed by sintering is an emerging alternative to beam-based additive manufacturing, capable of creating 3D metallic objects from 1D-extruded microfilaments. Here, in situ synchrotron X-ray diffraction and tomography are combined to study the phase evolution, alloy formation and sinter-densification of Fe-20Ni-5Mo (at.%) microfilaments. The filaments are
Shape memory epoxy composites with high mechanical performance manufactured by multi-material direct ink writing
Using 3D printing to manufacture shape memory polymers (SMPs) becomes popular, since the technique endows SMPs the ability to shape into desired structures according to their applications. Among various types of SMPs, epoxy-based shape memory polymer and their composites are known for their high modulus and strength. However, limited by their rheological behavior, it is still hard to prepare high-quality printable epoxy materials. Here, by carefully tuning of rheological properties, we can prepare printable ink showing good shape retention, excellent mechanical performances below and above the glass transition temperature of epoxy, as well as good shape memory effect. The prepared…
3D bioprinted multiscale composite scaffolds based on gelatin methacryloyl (GelMA)/chitosan microspheres as a modular bioink for enhancing 3D neurite outgrowth and elongation
The integration of multiscale micro- and macroenvironment has been demonstrated as a critical role in designing biomimetic scaffolds for peripheral nerve tissue regeneration. While it remains a remarkable challenge for developing a biomimetic multiscale scaffold for enhancing 3D neuronal maturation and outgrowth. Herein, we present a 3D bioprinted multiscale scaffold based on a modular bioink for integrating the 3D micro- and macroenvironment of native nerve tissue. Gelatin methacryloyl (GelMA)/Chitosan Microspheres (GC-MSs) were prepared by a microfluidic approach, and the effect of these microspheres on enhancing neurite outgrowth and elongation of PC12 cells was demonstrated. The 3D multiscale composite scaffolds were…
SnO2-Ag composites with high thermal cycling stability created by Ag infiltration of 3D ink-extruded SnO2 microlattices
SnO2-Ag composites with designed architectures with sub-millimeter feature sizes can provide enhanced functionality in electrical applications. SnO2-Ag composites consisting of a ceramic SnO2 micro-lattice filled with metallic Ag are created via a hybrid additive manufacturing method. The multistep process includes: (i) 3D extrusion printing of 0/90° cross-ply micro-lattices from SnO2-7%CuO nanoparticle-loaded ink; (ii) thermal treatment in air to burn the binders and sinter struts of the SnO2 micro-lattice to ~94% relative density; (iii) Ag melt infiltration of channels of sintered micro-lattices. Densification of the SnO2 struts during air-sintering is accelerated by CuO liquid phase forming at 1100°C. During the subsequent…
3D printing of clay for decorative architectural applications: Effect of solids volume fraction on rheology and printability
The effect of varying the solids volume fraction of an aqueous clay paste suspension on its printability via an Additive Manufacturing (AM) or 3D printing technique, Direct Ink Writing (DIW) or material extrusion, has been studied. DIW is a cost-effective and straightforward fabrication technology suitable for adoption at a larger scale by the traditional ceramics industry and the creative community. The pastes were prepared with volume fraction of solids ranging from 25–57 vol%. Their rheological properties (storage modulus and apparent yield stress) were measured by dynamic oscillatory rheometry. The relationships between solids content, rheological behaviour and print parameters were evaluated. An…
3D-Printing with precise layer-wise dose adjustments for paediatric use via pressure-assisted microsyringe printing
The establishment of 3D-printing as manufacturing process for oral solid dosage forms enables new options for the individualized medicine. The aim of this work was to develop a novel drug-printing model using pressure-assisted microsyringe (PAM) technology, which allows the precise dispensing of drug substances. Printed tablets with different numbers of layers, mimicking different doses for pediatric subgroups, were analyzed regarding mass variation, friability, thickness and disintegration time. Furthermore, the uniformity of dosage units and the dissolution behavior were investigated. Friability was
Microfabricated and 3-D printed electroconductive hydrogels of PEDOT:PSS and their application in bioelectronics
Biofabrication techniques such as microlithography and 3-D bioprinting have emerged in recent years as technologies capable of rendering complex, biocompatible constructs for biosensors, tissue and regenerative engineering and bioelectronics. While instruments and processes have been the subject of immense advancement, multifunctional bioinks have received less attention. A novel photocrosslinkable, hybrid bioactive and inherently conductive bioink formed from poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) nanomaterials within poly(2-hydroxyethyl methacrylate-co-polyethyleneglycol methacrylate) p(HEMA-co-EGMA) was used to render complex hydrogel constructs through microlithographic fabrication and 3-D printing. Constructs were directly compared through established metrics of acuity and fidelity, using side-by-side comparison of microarray grids, triangles incorporating angles 15–90°,…
Engineering hiPSC-CM and hiPSC-EC laden 3D nanofibrous splenic hydrogel for improving cardiac function through revascularization and remuscularization in infarcted heart
Cell therapy has been a promising strategy for cardiac repair after myocardial infarction (MI), but a poor ischemic environment and low cell delivery efficiency remain significant challenges. The spleen serves as a hematopoietic stem cell niche and secretes cardioprotective factors after MI, but it is unclear whether it could be used for human pluripotent stem cell (hiPSC) cultivation and provide a proper microenvironment for cell grafts against the ischemic environment. Herein, we developed a splenic extracellular matrix derived thermoresponsive hydrogel (SpGel). Proteomics analysis indicated that SpGel is enriched with proteins known to modulate the Wnt signaling pathway, cell-substrate adhesion, cardiac…
Highly Conductive Silicone Elastomers via Environment-Friendly Swelling and In Situ Synthesis of Silver Nanoparticles
Flexible and stretchable conductors are crucial components for next-generation flexible devices. Wrinkled structures often have been created on such conductors by depositing conductive materials on the pre-stretched or organic solvent swollen samples. Herein, water swelling is first proposed to generate the wrinkled structures on silicone elastomers. By immersing silicone/sugar hybrid in water, a significant amount of swelling occurs as a result of osmosis and capillary interactions with the sugar and silicone matrix. Considering the drastic swelling effect and controllable swelling ratio, water swelling is used to replace the conventional pre-stretching and organic solvent swelling to fabricate stretchable conductors. In situ…
The effect of induced membranes combined with enhanced bone marrow and 3D PLA-HA on repairing long bone defects in vivo
The repair of large bone defects has always been a challenge, especially with respect to regeneration capacity and autogenous bone availability. To address this problem, we fabricated a 3D-printed polylactic acid (PLA) and hydroxyapatite (HA) scaffold (3D-printed PLA-HA, providing scaffold) loaded with enhanced bone marrow (eBM, providing seed cells) combined with induced membrane (IM, providing grow factors) to repair large radial defects in rabbits. in vitro assays, we demonstrated that 3D-printed PLA-HA had excellent biocompatibility, as shown by co-culturing with mesenchymal stem cells (MSCs); eBM-derived MSCs exhibited considerable differentiation potential, as shown in trilineage differentiation assays. To investigate bone formation…
Paper-Based, Chemiresistive Sensor for Hydrogen Peroxide Detection
Detecting hydrogen peroxide (H2O2) as the side product of enzymatic reactions is of great interest in food and medical applications. Despite the advances in this field, the majority of reported H2O2 sensors are bulky, expensive, limited to only one phase detection (either gas or liquid), and require multistep fabrications. This article aims to address some of these limitations by presenting a 3D printable paper-based sensor made from poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) decorated with horseradish peroxidase, an enzyme able to interact with H2O2. Unlike most electrochemical PEDOT:PSS-based H2O2 sensors with voltametric or potentiometric mechanisms, the sensing mechanism in this technology is impedimetric, significantly…
Experimental investigation of esophageal reconstruction with electrospun polyurethane nanofiber and 3D printing polycaprolactone scaffolds using a rat model
Background We evaluated the outcome of esophageal reconstructions using tissue-engineered scaffolds. Method Partial esophageal defects were reconstructed with the following scaffolds; animals were grouped (n = 7 per group) as follows: (a) normal rats; (b) rats implanted with three-dimensional printing (3DP) polycaprolactone (PCL) scaffolds; (c) with human adipose-derived mesenchymal stem cell (ADSC)-seeded 3DP PCL scaffolds; (d) with polyurethane (PU)-nanofiber(Nf) scaffolds; and (e) with ADSC-seeded PU-Nf scaffolds. Results The esophageal defects were successfully repaired; however, muscle regeneration was greater in the 3DP PCL + ADSC groups than in the PU-Nf + ADSC groups (P
The performance of 3D bioscaffolding based on a human periodontal ligament stem cell printing technique
Bone tissue plays an important role in supporting and protecting the structure and function of the human body. Bone defects are a common source of injury and there are many reconstruction challenges in clinical practice. However, 3D bioprinting of scaffolds provides a promising solution. Hydrogels have emerged as biomaterials with good biocompatibility and are now widely used as cell-loaded materials for bioprinting. This study involved three steps: First, sodium alginate (SA), gelatin (Gel), and nano-hydroxyapatite (na-HA) were mixed into a hydrogel and its rheological properties assessed to identify the optimum slurry for printing. Second, SA/Gel/na-HA bioscaffolds were printed using 3D…
Mechanical Properties Tailoring of 3D Printed Photoresponsive Nanocellulose Composites
3D printing technologies allow control over the alignment of building blocks in synthetic materials, but compositional changes often require complex multimaterial printing steps. Here, 3D printable materials showing locally tunable mechanical properties are produced in a single printing step of Direct Ink Writing. These new inks consist of a polymer matrix bearing biocompatible photoreactive cinnamate derivatives and up to 30 wt% of anisotropic cellulose nanocrystals. The printed materials are mechanically versatile and can undergo further crosslinking upon illumination. When illuminating the material and controlling the irradiation doses, the Young’s moduli can be adjusted between 15 and 75 MPa. Moreover, spatially…
Freeform 3D printing using a continuous viscoelastic supporting matrix
Embedded bio-printing has fostered significant advances toward the fabrication of soft complex tissue-like constructs, by providing a physical support that allows the freeform shape maintenance within the prescribed spatial arrangement, even under gravity force. Current supporting materials still present major drawbacks for up-scaling embedded 3D bio-printing technology towards tissue-like constructs with clinically relevant dimensions. Herein, we report a a cost-effective and widely available supporting material for embedded bio-printing consisting on a continuous pseudo-plastic matrix of xanthan-gum (XG). This natural polisaccharide exhibits peculiar rheological properties that have enabled the rapid generation of complex volumetric 3D constructs with out-of-plane features. The freedom…
Digestion degree is a key factor to regulate the printability of pure tendon decellularized extracellular matrix bio-ink in extrusion-based 3D cell printing
Improving the printability of pure, decellularized extracellular matrix (dECM) bio-ink without altering its physiological components has been a challenge in three-dimensional (3D) cell printing. To improve the printability of the bio-ink, we first investigated the digestion process of the powdered dECM material obtained from porcine tendons. We manifested the digestion process of tendon derived dECM powders, which includes dissolution, gelatinization and solubilization. After a short dissolution period (around 10 min), we observed a ‘High viscosity slurry’ status (3 h) of the dECM precursors, i.e. the gelatinization process, followed by the solubilization processes, i.e. a ‘Medium viscosity slurry’ period (12 h)…
Dual-crosslinked 3D printed gelatin scaffolds with potential for temporomandibular joint cartilage regeneration
A promising alternative to current treatment options for degenerative conditions of the temporomandibular joint (TMJ) is cartilage tissue engineering, using 3D printed scaffolds and mesenchymal stem cells. Gelatin, with its inherent biocompatibility and printability has been proposed as a scaffold biomaterial, but because of its thermoreversible properties, rapid degradation and inadequate strength it must be crosslinked to be stable in physiological conditions. The aim of this study was to identify non-toxic and effective crosslinking methods intended to improve the physical properties of 3D printed gelatin scaffolds for cartilage regeneration. Dehydrothermal (DHT), ribose glycation and dual crosslinking with both DHT and…
Hierarchical patterning via dynamic sacrificial printing of stimuli-responsive hydrogels
Inspired by stimuli-tailored dynamic processes that spatiotemporally create structural and functional diversity in biology, a new hierarchical patterning strategy is proposed to induce the emergence of complex multidimensional structures via dynamic sacrificial printing of stimuli-responsive hydrogels. Using thermally responsive gelatin (Gel) and pH-responsive chitosan (Chit) as proof-of-concept materials, we demonstrate that the initially printed sacrificial material (Gel/Chit-H+ hydrogel with a single gelatin network) can be converted dynamically into non-sacrificial material (Gel/Chit-H+–Citr hydrogel with gelatin and an electrostatic citrate–chitosan dual network) under stimulus cues (citrate ions). Complex hierarchical structures and functions can be created by controlling either the printing patterns of…
In vitro characterization of hierarchical 3D scaffolds produced by combining additive manufacturing and thermally induced phase separation
This paper reports on the hybrid process we have used for producing hierarchical scaffolds made of poly(lactic-co-glycolic) acid (PLGA) and nanohydroxyapatite (nHA), analyzes their internal structures via scanning electron microscopy, and presents the results of our in vitro proliferation of MC3T3-E1 cells and alkaline phosphatase activity (ALP) for 0 and 21 days. These scaffolds were produced by combining additive manufacturing (AM) and thermally induced phase separation (TIPS) techniques. Slow cooling at a rate of 1.5 °C/min during the TIPS process was used to enable a uniform temperature throughout the scaffolds, and therefore, a relatively uniform pore size range. We produced ten different…
A powerful combination in designing polymeric scaffolds: 3D bioprinting and cryogelation
Three-dimensional (3D) bioprinting technologies have great attention in different researching areas such as tissue engineering, medicine, etc. due to its maximum mimetic property of natural biomaterials by providing cell combination, growth factors, and other biomaterials. Bioprinting of tissues, organs, or drug delivery systems emerged layer-by-layer deposition of bioinks. 3D bioprinting technique has some complexity such as choice of bioink combination, cell type, growth, and differentiation. In this study, a composite material in 3D bioprinting studies has been developed for biofabrication of the cell carrying scaffolds namely cryogenic scaffolds. Cryogenic scaffolds are highly elastic and have a continuous interconnected macroporous structure…
Edible meta-atoms
Metamaterials are artificial structures with unusual and superior properties that come from their carefully designed building blocks — also called meta-atoms. Metamaterials have permeated large swatches of science, including electromagnetics and mechanics. Although metamaterials hold the promise for realizing technological advances, their potential to enhance interactions between humans and materials has remained unexplored. Here, we devise meta-atoms with tailored fracture properties to control mouthfeel sensory experience. Using chocolate as a model material, we first use meta-atoms to control the fracture anisotropy and the number of cracks and demonstrate that these properties are captured in mouthfeel experience. We further use topology…
Control Delivery of Multiple Growth Factors to Actively Steer Differentiation and Extracellular Matrix Protein Production
In tissue engineering, biomaterials have been used to steer the host response. This determines the outcome of tissue regeneration, which is modulated by multiple growth factors (GFs). Hence, a sustainable delivery system for GFs is necessary to control tissue regeneration actively. A delivery technique of single and multiple GF combinations, using a layer‐by‐layer (LBL) procedure to improve tissue remodeling, is developed. TGF‐β1, PDGF‐ββ, and IGF‐1 are incorporated on tailor‐made polymeric rods, which could be used as a tool for potential tissue engineering applications, such as templates to induce the formation of in situ tissue engineered blood vessels (TEBVs). Cell response…
3D printed silk-gelatin hydrogel scaffold with different porous structure and cell seeding strategy for cartilage regeneration
Hydrogel scaffolds are attractive for tissue defect repair and reorganization because of their human tissue-like characteristics. However, most hydrogels offer limited cell growth and tissue formation ability due to their submicron- or nano-sized gel networks, which restrict the supply of oxygen, nutrients and inhibit the proliferation and differentiation of encapsulated cells. In recent years, 3D printed hydrogels have shown great potential to overcome this problem by introducing macro-pores within scaffolds. In this study, we fabricated a macroporous hydrogel scaffold through horseradish peroxidase (HRP)-mediated crosslinking of silk fibroin (SF) and tyramine-substituted gelatin (GT) by extrusion-based low-temperature 3D printing. Through physicochemical characterization,…
Bioprinting and In Vitro Characterization of an Egg White-Based Cardiac Patch for Myocardial Infarction
Myocardial infarction (MI) or heart attack occurs when the bloodstream to the heart is blocked, which may destroy a part of the heart muscle (or myocardium) and form perdurable scarred tissue. The infarcted myocardial muscle nowadays has no revival treatments, and also transplantation is limited as an option. Tissue engineering has the potential to restore myocardial function after an MI by fabricating tailored tissues for treatment. For tissue engineering, three-dimensional (3D) bioprinting is a fabrication method to create 3D constructs with living cells, which would be impossible by other traditional methods. Although various biomaterials, biologically-derived or synthetic, are available, only…
3D porous Ti6Al4V-beta-tricalcium phosphate scaffolds directly fabricated by additive manufacturing
3D Ti6Al4V-beta-tricalcium phosphate (TCP) hybrid scaffolds with interconnected porous network and controllable porosity and pore size were successfully produced by three-dimensional fiber deposition (3DF). The macrostructure of scaffolds was determined by the 3D design, whereas the micro- and submicron structure were derived from the Ti6Al4V powder sintering and the crystalline TCP powder, respectively. Ti6Al4V-TCP slurry was developed for 3DF by optimizing the TCP powder size, Ti6Al4V-to-TCP powder ratio and Ti6Al4V-TCP powder content. Moreover, the air pressure and fiber deposition rate were optimized. A maximum achievable ceramic content in the Ti6Al4V-TCP slurry that enables 3DF manufacturing was 10 wt%. The chemical…
Interfacial Piezoelectric Polarization Locking in Printable Ti3C2Tx MXene-Fluoropolymer Composites
Piezoelectric fluoropolymers convert mechanical energy to electricity and are ideal for sustainably providing power to electronic devices. To convert mechanical energy, a net polarization must be induced in the fluoropolymer, which is currently achieved via an energy intensive electrical poling process. Eliminating this process will enable the low-energy production of efficient energy harvesters. Here, by combining molecular dynamics simulations, piezoresponse force microscopy, and electrodynamic measurements, we reveal a hitherto unseen polarization locking phenomena of poly(vinylidene fluoride-co-trifluoroethylene) (PVDF-TrFE) perpendicular to the basal plane of two-dimensional (2D) Ti3C2Tx MXene nanosheets. This polarization locking, driven by strong electrostatic interactions enabled exceptional energy harvesting…
3D printing of shape-morphing and antibacterial anisotropic nanocellulose hydrogels
We report on a procedure for the preparation, printing and curing of antibacterial poly(N-isopropylacrylamide) nanocellulose-reinforced hydrogels. These composites present a highly anisotropic microstructure which allows to control and modulate the resulting mechanical properties. The incorporation of such nanoparticles enables us to modify both the strength and the humidity-dependent swelling direction of printed parts, offering a fourth-dimensional property to the resulting composite. Antibacterial properties of the hydrogels were obtained by incorporating the functionalized peptide ε-polylysine, modified with the addition of a methacrylate group to ensure UV-immobilization. We highlight the relevance of well-adapted viscoelastic properties of our material for 3D printing by…
3D printing PCL/nHA bone scaffolds: exploring the influence of material synthesis techniques
Background It is known that a number of parameters can influence the post-printing properties of bone tissue scaffolds. Previous research has primarily focused on the effect of parameters associated with scaffold design (e.g., scaffold porosity) and specific scaffold printing processes (e.g., printing pressure). To our knowledge, no studies have investigated variations in post-printing properties attributed to the techniques used to synthesize the materials for printing (e.g., melt-blending, powder blending, liquid solvent, and solid solvent). Methods Four material preparation techniques were investigated to determine their influence on scaffold properties. Polycaprolactone/nano-hydroxyapatite 30% (wt.) materials were synthesized through melt-blending, powder blending, liquid solvent,…
A 3D printed graphene electrode device for enhanced and scalable stem cell culture, osteoinduction and tissue building
Bone related diseases and disorders increasingly impact human health. Electrical stimulation (ES) has been shown to promote osteogenesis and healing of bone defects. Graphene, is an electrically conductive and biocompatible material with good mechanical properties (strength with flexibility), and therefore shows significant promise as a cell-compatible electrode for ES. Graphene-based scaffolds may therefore be used for 3D cell and tissue support, including 3D osteoinduction. We have fabricated 3D graphene electrode structures to provide ES to human adipose stem cells (ADSCs). The assemblies support ADSC growth and differentiation, with ES augmenting proliferation and osteogenesis. Our findings expand our previous work on…
3D bioprinting dermal-like structures using species-specific ulvan
3D bioprinting has been increasingly employed in skin tissue engineering for manufacturing living constructs with three-dimensional spatial precision and controlled architecture. There is however, a bottleneck in the tunability of bioinks to address specific biocompatibility challenges, functional traits and printability. Here we report on a traditional gelatin methacryloyl (GelMA) based bioink, tuned by addition of an ulvan type polysaccharide, isolated from a cultivated source of a specific Australian Ulvacean macroalgae (Ul84). Ul84 is a sulfate- and rhamnose-rich polysaccharide, resembling mammalian glycosaminoglycans that are involved in wound healing and tissue matrix structure and function. Printable bioinks were developed by addition of…
3D-printable zwitterionic nano-composite hydrogel system for biomedical applications
Herein, the cytotoxicity of a novel zwitterionic sulfobetaine hydrogel system with a nano-clay crosslinker has been investigated. We demonstrate that careful selection of the composition of the system (monomer to Laponite content) allows the material to be formed into controlled shapes using an extrusion based additive manufacturing technique with the ability to tune the mechanical properties of the product. Moreover, the printed structures can support their own weight without requiring curing during printing which enables the use of a printing-then-curing approach. Cell culture experiments were conducted to evaluate the neural cytotoxicity of the developed hydrogel system. Cytotoxicity evaluations were conducted…
The Effect Of Multi-Material Printing To Flexibility
Currently, 3D printing is one of the popular technological production methods, mainly because it offers various options that affect the resulting properties of prints. The aim of the presented work is to manufacture a prosthetic finger with a PIP and DIP joint using multi-material 3D printing, which will allow to mimic the flexion of a physiological finger. The subject of this research and testing is the design of a combination of solid and flexible material for a monolithic finger model, which will allow the required bending in selected areas of the print.
Three-dimensional biofabrication of an aragonite-enriched self-hardening bone graft substitute and assessment of its osteogenicity in vitro and in vivo
A self-hardening three-dimensional (3D)-porous composite bone graft consisting of 65 wt% hydroxyapatite (HA) and 35 wt% aragonite was fabricated using a 3D-Bioplotter®. New tetracalcium phosphate and dicalcium phosphate anhydrous/aragonite/gelatine paste formulae were developed to overcome the phase separation of the liquid and solid components. The mechanical properties, porosity, height and width stability of the end products were optimised through a systematic analysis of the fabrication processing parameters including printing pressure, printing speed and distance between strands. The resulting 3D-printed bone graft was confirmed to be a mixture of HA and aragonite by X-ray diffraction, Fourier transform infrared spectroscopy and energy…
Cryo‐3D Printing of Hierarchically Porous Polyhydroxymethylene Scaffolds for Hard Tissue Regeneration
High molecular weight polyhydroxymethylene (PHM) has a repeat unit identical to that of low molecular weight sugar alcohols and exhibits carbohydrate‐like properties. Herein, cryogenic extrusion‐based 3D printing is combined with a phase separation in water to fabricate hierarchically porous PHM scaffolds containing interconnected macro‐, micro‐, and nanopores. As PHM is infusible and insoluble in common solvents, its precursor polyvinylene carbonate (PVCA) dissolved in dimethylsulfoxide (DMSO) is used to 3D print hierarchically porous PVCA scaffolds that are converted into PHM by hydrolysis without impairing the pore architectures. Similar to low‐temperature deposition manufacturing, the PVCA/DMSO freezes on a build platform at −78…
Osteogenic differentiation of adipose-derived mesenchymal stem cells using 3D-Printed PDLLA/ β-TCP nanocomposite scaffolds
Designing bone scaffolds containing both organic and inorganic composites simulating the architecture of the bone is the most important principle in bone tissue engineering. The objective of this study was to fabricate a composite scaffold containing poly (D, l)-lactide (PDLLA) and β-tricalcium phosphate (β-TCP) as a platform for osteogenic differentiation of adipose-derived mesenchymal stem cells. In this study, PDLLA/β-TCP scaffolds were fabricated using three-dimensional printing (3D) technology through melt excursion technique. The physicomechanical characteristics, including microstructure, mechanical properties, of the customized scaffolds were investigated. Further, the in vitro biological characteristics of manufactured scaffolds were evaluated in conjugation with buccal fat…
Breast cancer patient‐derived scaffolds as a tool to monitor chemotherapy responses in human tumor microenvironments
Breast cancer is a heterogeneous disease where the tumor microenvironment, including extracellular components, plays a crucial role in tumor progression, potentially modulating treatment response. Different approaches have been used to develop three‐dimensional models able to recapitulate the complexity of the extracellular matrix. Here, we use cell‐free patient‐derived scaffolds (PDSs) generated from breast cancer samples that were recellularized with cancer cell lines as an in vivo‐like culture system for drug testing. We show that PDS cultured MCF7 cancer cells increased their resistance against the front‐line chemotherapy drugs 5‐fluorouracil, doxorubicin and paclitaxel in comparison to traditional two‐dimensional cell cultures. The gene expression…
Fabrication and characterization of mechanically competent 3D printed polycaprolactone-reduced graphene oxide scaffolds
The ability to produce constructs with a high control over the bulk geometry and internal architecture has situated 3D printing as an attractive fabrication technique for scaffolds. Various designs and inks are actively investigated to prepare scaffolds for different tissues. In this work, we prepared 3D printed composite scaffolds comprising polycaprolactone (PCL) and various amounts of reduced graphene oxide (rGO) at 0.5, 1, and 3 wt.%. We employed a two-step fabrication process to ensure an even mixture and distribution of the rGO sheets within the PCL matrix. The inks were prepared by creating composite PCL-rGO films through solvent evaporation casting…
Development of novel chitosan / guar gum inks for extrusion-based 3D bioprinting: Process, printability and properties
The major limitation of 3D bioprinting is the availability of inks. In order to develop new ink formulations, both their rheological behavior to obtain the best printability and the target bio-printed objects conformities must be studied. In this paper, for the first time in our knowledge, the preparation and the characterization of novel ink formulations based on two natural biocompatible polysaccharides, chitosan (CH) and guar gum (GG), are presented. Five ink formulations containing different proportions of CH and GG were prepared and characterized in terms of rheological properties and solvent evaporation. Their printability was assessed (by varying the nozzle diameter,…
A tri-component knee plug for the 3rd generation of autologous chondrocyte implantation
Here, we report a newly designed knee plug to be used in the 3rd generation of Autologous Chondrocyte Implantation (ACI) in order to heal the damaged knee cartilage. It is composed of three components: The first component (Bone Portion) is a 3D printed hard scaffold with large pores (~ 850 µm), made by hydroxyapatite and β-tricalcium phosphate to accommodate the bony parts underneath the knee cartilage. It is a cylinder with a diameter of 20 mm and height of 7.5 mm, with a slight dome shape on top. The plug also comprises a Cartilage Portion (component 2) which is a 3D…
Direct Ink Writing of Fully Bio-Based Liquid Crystalline Lignin/ Hydroxypropyl Cellulose Aqueous Inks: Optimization of Formulations and Printing Parameters
Following the recent demonstration of the potential to direct ink write lyotropic blends of organosolv lignin (OSL) and hydroxypropyl cellulose (HPC), this study aims to optimize the formulations and direct ink writing parameters for fully bio-based lignin/HPC inks. A prescreening identifies the theoretical window of printability for different compositions for formulations based on OSL solutions of 45, 47.5, and 50% solid contents and OSL/HPC wt %/wt % ratios of 30/70, 40/60, and 50/50. Measurements of shear–viscosity and recovery behavior evidence the shear-thinning contribution of HPC and the viscosity recovery contribution of lignin. Shape fidelity, morphology, and mechanical properties of printed…
Three dimensional printed bioglass/gelatin/alginate composite scaffolds with promoted mechanical strength, biomineralization, cell responses and osteogenesis
In this study, porous bioglass/gelatin/alginate bone tissue engineering scaffolds were fabricated by three-dimensional printing. The compressive strength and in vitro biomineralization properties of the bioglass–gelatin–alginate scaffolds (BG/Gel/SA scaffolds) were significantly improved with the increase of bioglass content until 30% weight percentage followed by a rapid decline in strength. In addition, the cells attach and spread on the BG/Gel/SA scaffolds surfaces represents good adhesion and biocompatibility. Furthermore, the cells (rat bone marrow mesenchymal stem cells, mBMSCs) proliferation and osteogenic differentiation on the BG/Gel/SA scaffolds were also promoted with the increase of bioglass content. Overall, the adding of bioglass in Gel/SA scaffolds…
Inclusion of a 3D-printed Hyperelastic Bone mesh improves mechanical and osteogenic performance of a mineralized collagen scaffold
Regenerative repair of craniomaxillofacial bone injuries is challenging due to both the large size and irregular shape of many defects. Mineralized collagen scaffolds have previously been shown to be a promising biomaterial implant to accelerate craniofacial bone regeneration in vivo. Here we describe inclusion of a 3D-printed polymer or ceramic-based mesh into a mineralized collagen scaffold to improve mechanical and biological activity. Mineralized collagen scaffolds were reinforced with 3D-printed Fluffy-PLG (ultraporous polylactide-co-glycolide co-polymer) or Hyperelastic Bone (90wt% calcium phosphate in PLG) meshes. We show degradation byproducts and acidic release from the printed structures have limited negative impact on the viability…
Benefits of Polydopamine as Particle/Matrix Interface in Polylactide/PD-BaSO4 Scaffolds
This work reports the versatility of polydopamine (PD) when applied as a particle coating in a composite of polylactide (PLA). Polydopamine was observed to increase the particle–matrix interface strength and facilitate the adsorption of drugs to the material surface. Here, barium sulfate radiopaque particles were functionalized with polydopamine and integrated into a polylactide matrix, leading to the formulation of a biodegradable and X-ray opaque material with enhanced mechanical properties. Polydopamine functionalized barium sulfate particles also facilitated the adsorption and release of the antibiotic levofloxacin. Analysis of the antibacterial capacity of these composites and the metabolic activity and proliferation of human…
Engineering 3D degradable, pliable scaffolds toward adipose tissue regeneration; optimized printability, simulations and surface modification
We present a solution to regenerate adipose tissue using degradable, soft, pliable 3D-printed scaffolds made of a medical-grade copolymer coated with polydopamine. The problem today is that while printing, the medical grade copolyesters degrade and the scaffolds become very stiff and brittle, being not optimal for adipose tissue defects. Herein, we have used high molar mass poly(L-lactide-co-trimethylene carbonate) (PLATMC) to engineer scaffolds using a direct extrusion-based 3D printer, the 3D Bioplotter®. Our approach was first focused on how the printing influences the polymer and scaffold’s mechanical properties, then on exploring different printing designs and, in the end, on assessing surface…
Expanding and optimizing 3D bioprinting capabilities using complementary network bioinks
A major challenge in three-dimensional (3D) bioprinting is the limited number of bioinks that fulfill the physicochemical requirements of printing while also providing a desirable environment for encapsulated cells. Here, we address this limitation by temporarily stabilizing bioinks with a complementary thermo-reversible gelatin network. This strategy enables the effective printing of biomaterials that would typically not meet printing requirements, with instrument parameters and structural output largely independent of the base biomaterial. This approach is demonstrated across a library of photocrosslinkable bioinks derived from natural and synthetic polymers, including gelatin, hyaluronic acid, chondroitin sulfate, dextran, alginate, chitosan, heparin, and poly(ethylene glycol).…
Towards 3D Multi-Layer Scaffolds for Periodontal Tissue Engineering Applications: Addressing Manufacturing and Architectural Challenges
Reduced periodontal support, deriving from chronic inflammatory conditions, such as periodontitis, is one of the main causes of tooth loss. The use of dental implants for the replacement of missing teeth has attracted growing interest as a standard procedure in clinical practice. However, adequate bone volume and soft tissue augmentation at the site of the implant are important prerequisites for successful implant positioning as well as proper functional and aesthetic reconstruction of patients. Three-dimensional (3D) scaffolds have greatly contributed to solve most of the challenges that traditional solutions (i.e., autografts, allografts and xenografts) posed. Nevertheless, mimicking the complex architecture and…
Additive manufacturing of silica aerogels
Owing to their ultralow thermal conductivity and open pore structure, silica aerogels are widely used in thermal insulation, catalysis, physics, environmental remediation, optical devices and hypervelocity particle capture. Thermal insulation is by far the largest market for silica aerogels, which are ideal materials when space is limited. One drawback of silica aerogels is their brittleness. Fibre reinforcement and binders can be used to overcome this for large-volume applications in building and industrial insulation, but their poor machinability, combined with the difficulty of precisely casting small objects, limits the miniaturization potential of silica aerogels. Additive manufacturing provides an alternative route to…
Influence of Geometry and Architecture on the In Vivo Success of 3D-Printed Scaffolds for Spinal Fusion
We previously developed a recombinant growth factor-free, three-dimensional (3D)-printed material comprising hydroxyapatite (HA) and demineralized bone matrix (DBM) for bone regeneration. This material has demonstrated the capacity to promote re-mineralization of the DBM particles within the scaffold struts and shows potential to promote successful spine fusion. Here, we investigate the role of geometry and architecture in osteointegration, vascularization, and facilitation of spine fusion in a preclinical model. Inks containing HA and DBM particles in a poly(lactide-co-glycolide) elastomer were 3D-printed into scaffolds with varying relative strut angles (90° vs. 45° advancing angle), macropore size (0 μm vs. 500 μm vs. 1000 μm), and strut…
Topology-Optimized 4D Printing of a Soft Actuator
Soft robots and actuators are emerging devices providing more capabilities in the field of robotics. More flexibility and compliance attributing to soft functional materials used in the fabrication of these devices make them ideal for delivering delicate tasks in fragile environments, such as food and biomedical sectors. Yet, the intuitive nonlinearity of soft functional materials and their anisotropic actuation in compliant mechanisms constitute an existent challenge in improving their performance. Topology optimization (TO) along with four-dimensional (4D) printing is a powerful digital tool that can be used to obtain optimal internal architectures for the efficient performance of porous soft actuators.…
Endothelial/Mesenchymal Stem Cell Crosstalk within Bioprinted Cocultures
The development of viable tissue surrogates requires a vascular network that sustains cell metabolism and tissue development. The coculture of endothelial cells (ECs) and mesenchymal stem cells (MSCs), the two key players involved in blood vessel formation, has been heralded in tissue engineering (TE) as one of the most promising approaches for scaffold vascularization. However, MSCs may exert both proangiogenic as well antiangiogenic role. Furthermore, it is unclear which cell type is responsible for the upregulation of angiogenic pathways observed in EC:MSC cocultures. There is disagreement on the proangiogenic action of MSCs, as they have also been shown to negatively…
3D-Printed Ceramic-Demineralized Bone Matrix Hyperelastic Bone Composite Scaffolds for Spinal Fusion
Although numerous spinal biologics are commercially available, a cost-effective and safe bone graft substitute material for spine fusion has yet to be proven. In this study, “3D-Paints” containing varying volumetric ratios of hydroxyapatite (HA) and human demineralized bone matrix (DBM) in a poly(lactide-co-glycolide) elastomer were three-dimensional (3D) printed into scaffolds to promote osteointegration in rats, with an end goal of spine fusion without the need for recombinant growth factor. Spine fusion was evaluated by manual palpation, and osteointegration and de novo bone formation within scaffold struts were evaluated by laboratory and synchrotron microcomputed tomography and histology. The 3:1 HA:DBM composite…
Bioprinting of an osteocyte network for biomimetic mineralization
Osteocytes, essential regulators of bone homeostasis, are embedded in the mineralized bone matrix. Given the spatial arrangement of osteocytes, bioprinting represents an ideal method to biofabricate a 3D osteocyte network with a suitable surrounding matrix similar to native bone tissue. Here, we reported a 3D bioprinted osteocyte-laden hydrogel for biomimetic mineralization in vitro with exceptional shape fidelity, a high cell density (107 cells per ml) and high cell viability (85–90%). The bioinks were composed of biomimetic modified biopolymers, namely, gelatine methacrylamide (GelMA) and hyaluronic acid methacrylate (HAMA), with or without type I collagen. The osteocyte-laden constructs were printed and cultured…
Polyhydroxymethylenes as Multifunctional High Molecular Weight Sugar Alcohols Tailored for 3D Printing and Medical Applications
Common sugar alcohols used as artificial sweeteners and components of polymer networks represent low molecular weight polyhydroxymethylenes (PHMs) with the general formula [CH(OH)]n H2 but very low degree of polymerization (n = 2–6). Herein high molecular weight PHM (n >> 100) unparalleled in nature is tailored for 3D printing and medical applications by free radical polymerization of 1,3‐dioxol‐2‐one vinylene carbonate to produce polyvinylene carbonate (PVCA) which yields PHM by hydrolysis. Furthermore, PVCA is solution processable and enables PHM functionalization, membrane formation, and extrusion‐based 3D printing. Opposite to cellulose, amorphous PHM is plasticized by water and is readily functionalized via PVCA…
A novel vehicle-like drug delivery 3D printing scaffold and its applications for a rat femoral bone repairing in vitro and in vivo
The high surface area ratio and special structure of mesoporous bioactive glass (MBG) endow it with excellent physical adsorption of various drugs without destroying the chemical activity. Silicate 1393 bioactive glass (1393) is famous for its fantastic biodegradability and osteogenesis. Herein, we have built a novel vehicle-like drug delivery 3D printing scaffold with multiplexed drug delivery capacity by coating MBG on the surface of 1393 ([email protected]). Furthermore, we have applied DEX and BMP-2 on the [email protected] scaffold to endow it with antibacterial and osteogenic properties. Results indicated that this [email protected] scaffold could effectively load and controlled release BMP-2, DNA and…
Cellular, Mineralized, and Programmable Cellulose Composites Fabricated by 3D Printing of Aqueous Pastes Derived from Paper Wastes and Microfibrillated Cellulose
Combining recycling of paper wastes (WPs) with extrusion‐based additive manufacturing represents a sustainable route to cellular cellulose composites tailored for lightweight construction. Particularly, shear mixing of shredded WPs with an aqueous solution of a polymer binder like polyvinyl alcohol (PVA) yields aqueous pastes suitable for 3D printing. As a shear thinning additive, both WP and microfibrillated cellulose account for enhanced shear thinning and dimensional stability. Opposite to the formation of dense WP/PVA composites by melt extrusion, 3D printing of aqueous pastes produces cellular cellulose/PVA composites exhibiting hierarchical pore architectures. In spite of low densities around 0.8 g cm−3, high Young’s…
Functional reconstruction of injured corpus cavernosa using 3D-printed hydrogel scaffolds seeded with HIF-1α-expressing stem cells
Injury of corpus cavernosa results in erectile dysfunction, but its treatment has been very difficult. Here we construct heparin-coated 3D-printed hydrogel scaffolds seeded with hypoxia inducible factor-1α (HIF-1α)-mutated muscle-derived stem cells (MDSCs) to develop bioengineered vascularized corpora. HIF-1α-mutated MDSCs significantly secrete various angiogenic factors in MDSCs regardless of hypoxia or normoxia. The biodegradable scaffolds, along with MDSCs, are implanted into corpus cavernosa defects in a rabbit model to show good histocompatibility with no immunological rejection, support vascularized tissue ingrowth, and promote neovascularisation to repair the defects. Evaluation of morphology, intracavernosal pressure, elasticity and shrinkage of repaired cavernous tissue prove that…
Fabrication of forsterite scaffolds with photothermal-induced antibacterial activity by 3D printing and polymer-derived ceramics strategy
Bacterial infection of the implanting materials is one of the greatest challenges in bone tissue engineering. In this study, porous forsterite scaffolds with antibacterial activity have been fabricated by combining 3D printing and polymer-derived ceramics (PDCs) strategy, which effectively avoided the generation of MgSiO3 and MgO impurities. Forsterite scaffolds sintered in an argon atmosphere can generate free carbon in the scaffolds, which exhibited excellent photothermal effect and could inhibit the growth of Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) in vitro. In addition, forsterite scaffolds have uniform macroporous structure, high compressive strength (>30 MPa) and low degradation rate.…
Bioprinting and in vitro characterization of alginate dialdehyde–gelatin hydrogel bio-ink
Cell-laden cardiac patches have recently been emerging to renew cellular sources for myocardial infarction (MI, commonly know as a heart attack) repair. However, the fabrication of cell-laden patches with porous structure remains challenging due to the limitations of currently available hydrogels and existing processing techniques. The present study utilized a bioprinting technique to fabricate hydrogel patches and characterize them in terms of printability, mechanical and biological properties. Cell-laden hydrogel (or bio-ink) was formulated from alginate dialdehyde (ADA) and gelatin (GEL) to improve the printability, degradability as well as bioactivity. Five groups of hydrogel compositions were designed to investigate the influence…
Experiments on Flexible Filaments in Air Flow for Aeroelasticity and Fluid-Structure Interaction Models Validation
Several problems in science and engineering are characterized by the interaction between fluid flows and deformable structures. Due to their complex and multidisciplinary nature, these problems cannot normally be solved analytically and experiments are frequently of limited scope, so that numerical simulations represent the main analysis tool. Key to the advancement of numerical methods is the availability of experimental test cases for validation. This paper presents results of an experiment specifically designed for the validation of numerical methods for aeroelasticity and fluid-structure interaction problems. Flexible filaments of rectangular cross-section and various lengths were exposed to air flow of moderate Reynolds…
Three-dimensional printing of chemically crosslinked gelatin hydrogels for adipose tissue engineering
Despite their outstanding potential and the success that has already been achieved with three-dimensional (3D) printed hydrogel scaffolds, there has been little investigation into their application in the regeneration of damaged or missing adipose tissue (AT). Due to their macroscopic shape, microarchitecture, extracellular matrix-mimicking structure, degradability and soft tissue biomimetic mechanical properties, 3D printed hydrogel scaffolds have great potential for use in aesthetic, structural and functional restoration of AT. Here, we propose a simple and cost-effective 3D printing strategy using gelatin-based ink to fabricate scaffolds suitable for AT engineering. The ink, successfully printed here for the first time, was prepared…
A multilayered valve leaflet promotes cell-laden collagen type I production and aortic valve hemodynamics
Patients with aortic heart valve disease are limited to valve replacements that lack the ability to grow and remodel. This presents a major challenge for pediatric patients who require a valve capable of somatic growth and at a smaller size. A patient-specific heart valve capable of growth and remodeling while maintaining proper valve function would address this major issue. Here, we recreate the native valve leaflet structure composed of poly-ε-caprolactone (PCL) and cell-laden gelatin-methacrylate/poly (ethylene glycol) diacrylate (GelMA/PEGDA) hydrogels using 3D printing and molding, and then evaluate the ability of the multilayered scaffold to produce collagen matrix under physiological shear…
Biomechanically, structurally and functionally meticulously tailored polycaprolactone/silk fibroin scaffold for meniscus regeneration
Meniscus deficiency, the most common and refractory disease in human knee joints, often progresses to osteoarthritis (OA) due to abnormal biomechanical distribution and articular cartilage abrasion. However, due to its anisotropic spatial architecture, complex biomechanical microenvironment, and limited vascularity, meniscus repair remains a challenge for clinicians and researchers worldwide. In this study, we developed a 3D printing-based biomimetic and composite tissue-engineered meniscus scaffold consisting of polycaprolactone (PCL)/silk fibroin (SF) with extraordinary biomechanical properties and biocompatibility. We hypothesized that the meticulously tailored composite scaffold could enhance meniscus regeneration and cartilage protection. Methods: The physical property of the scaffold was characterized by…
3D printing of multilayered scaffolds for rotator cuff tendon regeneration
Repairing massive rotator cuff tendon defects remains a challenge due to the high retear rate after surgical intervention. 3D printing has emerged as a promising technique that enables the fabrication of engineered tissues with heterogeneous structures and mechanical properties, as well as controllable microenvironments for tendon regeneration. In this study, we developed a new strategy for rotator cuff tendon repair by combining a 3D printed scaffold of polylactic-co-glycolic acid (PLGA) with cell-laden collagen-fibrin hydrogels. We designed and fabricated two types of scaffolds: one featuring a separate layer-by-layer structure and another with a tri-layered structure as a whole. Uniaxial tensile tests…
Toughening 3D-printed Sr–HT–Gahnite caffold through natural and synthetic polymer coating
Bone scaffold for aiding bone regeneration in large bone defects should have following ideal characteristics; biocompatibility, biodegradability, bio-activity, high porous and interconnected-pore architecture, as well as, mechanical characteristics similar to the cortical bone for supporting loads. 3D printed Sr–HT (Sr–Ca2ZnSi2O7)–gahnite scaffold with hexagonal pore structure is an interesting bone scaffold meeting most of these ideal features. To explain, biocompatible, osteoinductive, and osteoconductive properties as well as unique high compressive strength are obtained from Sr–HT–gahnite, glass-ceramic, material. With hexagonal pore structure, the scaffold has compressive strength comparable to cortical bone balancing with high porosity and large pore size. Nonetheless, the scaffold…
An advanced 3D monofilament biosuture
Sutures are one of the most widely used medical devices with employment in over 12 million procedures per year globally.1 Yet, the ideal suture material does not exist. Over the years scientists and surgeons alike have set out to find a suture material that is biocompatible, easy to handle, does not cause unnecessary tissue damage and creates an optimal environment for wound healing.2 This has led to the discovery of numerous suture materials ranging from silk and catgut in the early 1800s to synthetic polymers such as polylactic acid and polyglycolide that are currently in use.3 Sutures on the market…
3D printed Sr-containing composite scaffolds: Effect of structural design and material formulation towards new strategies for bone tissue engineering
The use of composite materials, processed as 3D tissue-like scaffolds, has been widely investigated as a promising strategy for bone tissue engineering applications. Also, additive manufacturing technologies such as fused deposition modelling (FDM) have greatly contributed to the manufacture of patient-specific scaffolds with predefined pore structures and intricate geometries. However, conventional FDM techniques require the use of materials exclusively in the form of filaments, which in order to produce composite scaffolds lead to additional costs for the fabrication of precursor filaments as well as multi-step production methods. In this study, we propose the use of an advantageous extrusion-based printing technology,…
Heparan sulfate loaded polycaprolactone-hydroxyapatite scaffolds with 3D printing for bone defect repair
With the increasing applications of 3D printing technology in biomedical field, the composition or additives of the related materials has become critical for the next development. In the current study, we have prepared 3D printed polycaprolactone-hydroxyapatite (PCL-HA) porous scaffolds with loaded heparan sulfate (HS), in order to reveal the reparative effect of different concentrations of HS on the healing of bone defects. As a result, the scaffold itself showed sound compression resistance, air porosity and good biocompatibility. From both in vitro and in vivo experiments, the scaffold with low concentration of HS led to positive effects in promoting osteoblast maturation…
High thermal conductive epoxy based composites fabricated by multi-material direct ink writing
Thermal management is of importance to microelectronic industry. Owing to both excellent thermal conduction and electrical insulation, hexagonal boron nitride (BN) platelets are the widely-used thermal conductive fillers in polymers. Adding high content of BN can endow polymers high thermal conductivity, but in most cases, destroy the flexibility, failure strength as well as processability of the polymers significantly. Here, we report a multi-material 3D printing technique to prepare high thermal conductive epoxy based composites, by which BN platelets were assembled together in heat-conducting phase to form the dense, continuous thermal pathway. The BN platelets show excellent alignment along printing direction…
Mechanical properties of hybrid triphasic scaffolds for osteochondral tissue engineering
Reproducing the advanced complexity of native tissue by means of the 3D multi-functional construct is a promising tissue engineering approach to osteochondral tissue regeneration. In this study, we present a porous 3D construct composed of three zones responsible for the regeneration of non-calcified cartilage, calcified cartilage and subchondral bone. These three zones of the hybrid were composed of modified biopolymers: (i) alginate (Alg) reinforced by short polylactide (PLA) fibres, (ii) alginate and gelatine methacrylate (GelMA) combined with ß-tricalcium phosphate particles (TCP), (iii) 3D printed polycaprolactone scaffold subsequently modified with the use of an innovative solvent treatment method based on acetone…
A 3D Bioprinted Pseudo-Bone Drug Delivery Scaffold for Bone Tissue Engineering
A 3D bioprinted pseudo-bone drug delivery scaffold was fabricated to display matrix strength, matrix resilience, as well as porous morphology of healthy human bone. Computer-aided design (CAD) software was employed for developing the 3D bioprinted scaffold. Further optimization of the scaffold was undertaken using MATLAB® software and artificial neural networks (ANN). Polymers employed for formulating the 3D scaffold comprised of polypropylene fumarate (PPF), free radical polymerized polyethylene glycol- polycaprolactone (PEG-PCL-PEG), and pluronic (PF127). Simvastatin was incorporated into the 3D bioprinted scaffolds to further promote bone healing and repair properties. The 3D bioprinted scaffold was characterized for its chemical, morphological, mechanical,…
Experimental Investigation and Optimal 3D Bioprinting Parameters of SA-Gel Porous Cartilage Scaffold
The main aim of this paper is to achieve the suitable SA-GEL (sodium alginate and gelatin) porous cartilage scaffold by 3D printing technology with optimal prediction parameters. Firstly, the characteristics of SA-GEL were analyzed, the influence of calcium chloride on the gel was explored, and the optimal cross-linking concentration and gelation temperature were determined. Secondly, a prediction model of the extrusion line width of SA-GEL was established, in which the printing pressure, the moving speed of the needle and the fiber interval were the important parameters affecting the printing performance of the SA-GEL composite material. Thirdly, the SA-GEL composite scaffolds…
Process–Structure–Quality Relationships of Three-Dimensional Printed Poly(Caprolactone)-Hydroxyapatite Scaffolds
Bone defects are common and, in many cases, challenging to treat. Tissue engineering is an interdisciplinary approach with promising potential for treating bone defects. Within tissue engineering, three-dimensional (3D) printing strategies have emerged as potent tools for scaffold fabrication. However, reproducibility and quality control are critical aspects limiting the translation of 3D printed scaffolds to clinical use, which remain to be addressed. To elucidate the factors that yield to the generation of defects in bioprinting and to achieve reproducible biomaterial printing, the objective of this article is to frame a systematic approach for optimizing and validating 3D printing of poly(caprolactone)…
Fiber engraving for bioink bioprinting within 3D printed tissue engineering scaffolds
In this work, we describe a new 3D printing methodology for the fabrication of multimaterial scaffolds involving the combination of thermoplastic extrusion and low temperature extrusion of bioinks. A fiber engraving technique was used to create a groove on the surface of a thermoplastic printed fiber using a commercial 3D printer and a low viscosity bioink was deposited into this groove. In contrast to traditional extrusion bioinks that rely on increased viscosity to prevent lateral spreading, this groove creates a defined space for bioink deposition. By physically constraining bioink spreading, a broader range of viscosities can be used. As proof-of-concept,…
3D hybrid printing platform for auricular cartilage reconstruction
As scaffolds approach dimensions that are of clinical relevance, mechanical integrity and distribution becomes an important factor to the overall success of the implant. Hydrogels often lack the structural integrity and mechanical properties for use in vivo or handling. The inclusion of a structural support during the printing process, referred to as hybrid printing, allows the implant to retain structure and protect cells during maturation without needing to compromise its biological performance. In this study, scaffolds for the purpose of auricular cartilage reconstruction were evaluated via a hybrid printing approach using methacrylated Gelatin (GelMA) and Hyaluronic acid (HAMA) as the…
Entrapped in cage (EiC) scaffolds of 3D-printed polycaprolactone and porous silk fibroin for meniscus tissue engineering
The meniscus has critical functions in the knee joint kinematics and homeostasis. Injuries of the meniscus are frequent, and the lack of a functional meniscus between the femur and tibial plateau can cause articular cartilage degeneration leading to osteoarthritis development and progression. Regeneration of meniscus tissue has outstanding challenges to be addressed. In the current study, novel Entrapped in cage (EiC) scaffolds of 3D-printed polycaprolactone (PCL) and porous silk fibroin were proposed for meniscus tissue engineering. As confirmed by micro-structural analysis the entrapment of silk fibroin was successful, and all scaffolds had excellent interconnectivity (≥99%). The EiC scaffolds had more…
3D Printed Sugar‐Sensing Hydrogels
The ability of boronic acids (BAs) to reversibly bind diols, such as sugars, has been widely studied in recent years. In solution, through the incorporation of additional fluorophores, the BA–sugar interaction can be monitored by changes in fluorescence. Ultimately, a practical realization of this technology requires a transition from solution‐based methodologies. Herein, the first example of 3D‐printed sugar‐sensing hydrogels, achieved through the incorporation of a BA–fluorophore pair in a gelatin methacrylamide‐based matrix is presented. Through optimization of monomeric cocktails, it is possible to use extrusion printing to generate structured porous hydrogels which show a measurable and reproducible linear fluorescence response…
Workflow for highly porous resorbable custom 3D printed scaffolds using medical grade polymer for large volume alveolar bone regeneration
Objectives This study investigates the design, workflow, and manufacture of highly porous, resorbable additively manufactured, 3‐dimensional (3D) custom scaffolds for the regeneration of large volume alveolar bone defects. Materials and Methods Computed tomography (CT) scans of 5 posterior mandibular vertical bone defects were obtained. Surface masks (3D surface contours) of the recipient site were first isolated using a contrast threshold, transformed into 3D objects, and used to guide the formation of custom implant template models. To determine model accuracy and fit, the gap and overlap between the patient geometry models and the idealized template 3D models were quantified. Models were…
Biomimetic corneal stroma using electro-compacted collagen
Engineering substantia propria (or stroma of cornea) that mimics the function and anatomy of natural tissue is vital for in vitro modelling and in vivo regeneration. There are, however, few examples of bioengineered biomimetic corneal stroma. Here we describe the construction of an orthogonally oriented 3D corneal stroma model (3D-CSM) using pure electro-compacted collagen (EC). EC films comprise aligned collagen fibrils and support primary human corneal stromal cells (hCSCs). Cell-laden constructs are analogous to the anatomical structure of native human cornea. The hCSCs are guided by the topographical cues provided by the aligned collagen fibrils of the EC films. Importantly,…
Development of a Photocrosslinkable Methacrylated Methylcellulose and Gelatin bioink for Cartilage Tissue Regeneration
Articular cartilage disease can cause pain, mobility issues, and disability. Clinical treatment includes microfracture, subchondral drilling, graft transplantation, and eventually total joint replacement implant. However, these approaches can present specific problems and limitations. Three-dimensional (3D) bioprinted scaffolds utilising hydrogels can provide a suitable 3D biochemical and biophysical environment, thus is a promising strategy for cartilage tissue therapy and regeneration. This study aims to develop a new hydrogel bioink with improved printability, mechanical, and biological properties for cartilage regeneration. A photocrosslinkable methacrylated methylcellulose (MCMA) and gelatin (GelMA) hybrid bioink is evaluated in this preliminary investigation. The results showed that methylcellulose and…
A smart scaffold composed of three-dimensional printing and electrospinning techniques and its application in rat abdominal wall defects
Background Biological composite scaffolds are increasingly being used in abdominal wall reconstruction but still have certain shortcomings. The present study describes here a novel three-dimensional (3D) scaffold fabricated by combining 3D printing (3DP) and electrospinning (ESP). Methods Biological composite scaffolds are composed of integrated 3DP interconnected macrofiber and random ESP microfiber networks. The 3DP scaffold retains intact 3D architecture and mechanical properties, while the ESP network serves as a cell entrapment system at the extracellular matrix (ECM) scale. Biological composite scaffolds are implanted in a defective rat abdominal wall to detect if it could induce early vascularization and reconstruction of…
Incorporation of functionalized reduced graphene oxide/magnesium nanohybrid to enhance the osteoinductivity capability of 3D printed calcium phosphate-based scaffolds
Improving bone regeneration is one of the most pressing problems facing bone tissue engineering (BTE) which can be tackled by incorporating different biomaterials into the fabrication of the scaffolds. The present study aims to apply the 3D-printing and freeze-drying methods to design an ideal scaffold for improving the osteogenic capacity of Dental pulp stem cells (DPSCs). To achieve this purpose, hybrid constructs consisted of 3D-printed Beta-tricalcium phosphate (β-TCP)-based scaffolds filled with freeze-dried gelatin/reduced graphene oxide-Magnesium-Arginine (GRMA) matrix were fabricated through a novel green method. The effect of different concentrations of Reduced graphene oxide-Magnesium-Arginine (RMA) (0, 0.25% and 0.75%wt) on the…
Silicon substituted hydroxyapatite/VEGF scaffolds stimulate bone regeneration in osteoporotic sheep
Silicon-substituted hydroxyapatite (SiHA) macroporous scaffolds have been prepared by robocasting. In order to optimize their bone regeneration properties, we have manufactured these scaffolds presenting different microstructures: nanocrystalline and crystalline. Moreover, their surfaces have been decorated with vascular endothelial growth factor (VEGF) to evaluate the potential coupling between vascularization and bone regeneration. In vitro cell culture tests evidence that nanocrystalline SiHA hinders pre-osteblast proliferation, whereas the presence of VEGF enhances the biological functions of both endothelial cells and pre-osteoblasts. The bone regeneration capability has been evaluated using an osteoporotic sheep model. In vivo observations strongly correlate with in vitro cell culture…
Aminated 3D Printed Polystyrene Maintains Stem Cell Proliferation and Osteogenic Differentiation
As 3D printing becomes more common and the technique is used to build culture platforms, it is imperative to develop surface treatments for specific responses. The advantages of aminating and oxidizing polystyrene (PS) for human mesenchymal stem cell (hMSC) proliferation and osteogenic differentiation are investigated. We find that ammonia (NH3) plasma incorporates amines while oxygen plasma adds carbonyl and carboxylate groups. Across 2D, 3D, and 3D dynamic culture, we find that the NH3- treated surfaces encouraged cell proliferation. Our results show that the NH3-treated scaffold was the only treatment allowing dynamic proliferation of hMSCs with little evidence of osteogenic differentiation.…
Multimaterial Dual Gradient Three-Dimensional Printing for Osteogenic Differentiation and Spatial Segregation
In this study of three-dimensional (3D) printed composite β-tricalcium phosphate (β-TCP)-/hydroxyapatite/poly(ɛ-caprolactone)-based constructs, the effects of vertical compositional ceramic gradients and architectural porosity gradients on the osteogenic differentiation of rabbit bone marrow-derived mesenchymal stem cells (MSCs) were investigated. Specifically, three different concentrations of β-TCP (0, 10, and 20 wt%) and three different porosities (33% ± 4%, 50% ± 4%, and 65% ± 3%) were examined to elucidate the contributions of chemical and physical gradients on the biochemical behavior of MSCs and the mineralized matrix production within a 3D culture system. By delaminating the constructs at the gradient transition point, the spatial separation of cellular phenotypes could be specifically…
Complex‐Shaped Cellulose Composites Made by Wet Densification of 3D Printed Scaffolds
Cellulose is an attractive material resource for the fabrication of sustainable functional products, but its processing into structures with complex architecture and high cellulose content remains challenging. Such limitation has prevented cellulose‐based synthetic materials from reaching the level of structural control and mechanical properties observed in their biological counterparts, such as wood and plant tissues. To address this issue, a simple approach is reported to manufacture complex‐shaped cellulose‐based composites, in which the shaping capabilities of 3D printing technologies are combined with a wet densification process that increases the concentration of cellulose in the final printed material. Densification is achieved by…
Investigation of semi-solid formulations for 3D printing of drugs after prolonged storage to mimic real-life applications
The implementation of tailor-made dosage forms is currently one of the biggest challenges in the health sector. Over the last years, different approaches have been introduced to provide an individual and precise dispensing of the appropriate dose of an active pharmaceutical ingredient (API). A more recent approach, which has been intensively researched in the last years, is 3D-printing of medicines. The aim of this work was to develop printing formulations free of organic solvents for a pressure-assisted microsyringe printing method (PAM), which should also be printable over several days of storage. Furthermore, the printed dosage forms should provide a sustained…
Three-dimensional printed multiphasic scaffolds with stratified cell-laden gelatin methacrylate hydrogels for biomimetic tendon-to-bone interface engineering
Background The anatomical properties of the enthesis of the rotator cuff are hardly regained during the process of healing. The tendon-to-bone interface is normally replaced by fibrovascular tissue instead of interposition fibrocartilage, which impairs biomechanics in the shoulder and causes dysfunction. Tissue engineering offers a promising strategy to regenerate a biomimetic interface. Here, we report heterogeneous tendon-to-bone interface engineering based on a 3D-printed multiphasic scaffold. Methods A multiphasic poly(ε-caprolactone) (PCL)–PCL/tricalcium phosphate–PCL/tricalcium phosphate porous scaffold was manufactured using 3D printing technology. The three phases of the scaffold were designed to mimic the graded tissue regions in the tendon-to-bone interface—tendon, fibrocartilage, and…
3D printable Polycaprolactone-gelatin blends characterized for in vitro osteogenic potency
Synthetic polycaprolactone (PCL) was modified with various concentrations of gelatin (GL) to enhance its physical properties and biological activity for bone regeneration. A novel trisolvent mixture has been used to mix PCL and GL that were fabricated as scaffolds using 3D plotting. The scaffolds were characterized for their mechanical properties, hydrophilicity and swelling ability. In addition, the structure and morphology of the printed scaffolds were analyzed by Fourier-Transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM) and microcomputed tomography (μCT). Attachment, proliferation and osteogenic differentiation of rat bone marrow stromal cells (BMSC) cultured on the printed scaffolds were…
Highly Porous, Biocompatible Tough Hydrogels, Processable via Gel Fiber Spinning and 3D Gel Printing
Conventional tough hydrogels offer enhanced mechanical properties and high toughness. Their application scope however is limited by their lack of processability. Here, a new porous tough hydrogel system is introduced which is processable via gel fiber spinning and 3D printing. The tough hydrogels are produced by rehydrating processable organogels developed by induced phase separation between two linear polymer chains capable of intermolecular hydrogen bonding. Through a slow sol–gel phase separation, highly porous gel networks made of hydrogen bonded polymer chains is formed. These organogels can be easily transformed to 3D printed multimaterial constructs or gel fibers, and after rehydration produce…
Chondroinductive Alginate-Based Hydrogels Having Graphene Oxide for 3D Printed Scaffold Fabrication
Scaffolds based on bioconjugated hydrogels are attractive for tissue engineering because they can partly mimic human tissue characteristics. For example, they can further increase their bioactivity with cells. However, most of the hydrogels present problems related to their processability, consequently limiting their use in 3D printing to produce tailor-made scaffolds. The goal of this work is to develop bioconjugated hydrogel nanocomposite inks for 3D printed scaffold fabrication through a micro-extrusion process having improved both biocompatibility and processability. The hydrogel is based on a photocrosslinkable alginate bioconjugated with both gelatin and chondroitin sulfate in order to mimic the cartilage extracellular matrix,…
Printability and Critical Insight into Polymer Properties during Direct-Extrusion Based 3D Printing of Medical Grade Polylactide and Copolyesters
Various 3D printing techniques currently use degradable polymers such as aliphatic polyesters to create well-defined scaffolds. Even though degradable polymers are influenced by the printing process, and this subsequently affects the mechanical properties and degradation profile, degradation of the polymer during the process is not often considered. Degradable scaffolds are today printed and cell–material interactions evaluated without considering the fact that the polymer change while printing the scaffold. Our methodology herein was to vary the printing parameters such as temperature, pressure, and speed to define the relationship between printability, polymer microstructure, composition, degradation profile during the process, and rheological behavior.…
Investigation of thermoplastic melt flow and dimensionless groups in 3D bioplotting
We investigate the key 3D bioplotting processing parameters, including needle diameter and dispensing pressure, on the shear rates, shear stresses, pressure drops, and swell ratios of extruded miscible polycaprolactone (PCL) blends having a range of viscosities. Assuming simple capillary flow, we construct flow curves and we estimate that the shear stresses inside the needle of the bioplotter range from 2500 to 20,000 Pa and the corresponding shear rates from 2 to 25 s−1, depending upon the viscosity of the blend. We further identify relevant dimensionless numbers that reflect the material rheological properties and processing conditions; these include the capillary number…
Double dynamic cellulose nanocomposite hydrogels with environmentally adaptive self-healing and pH-tuning properties
Dynamic hydrogels are prepared by either dynamic covalent bonds or supramolecular chemistry. Herein, we develop a dynamic hydrogel by combining both dynamic covalent bonds and supramolecular chemistry that exhibits environmentally adaptive self-healing and pH-tuning properties. To do so, we prepared a gelatin–nanopolysaccharide mixed hydrogel containing pyrogallol/catechol groups and trivalent metal ions. The as-prepared hydrogels are able to heal damage inflicted on them under acidic (pH 3 and 6), neutral (pH 7), and basic (pH 9) environments. The mechanism of healing at acidic and neutral pHs is dominated by coordination bonds between pyrogallol/catechol groups of tannic acid and ferric ions, whilst…
Fuzzy Evaluation of Rapid Prototyping Methods for Latticed Silicone Pieces
In order to compare the influence of the manufacturing methods on the property of silicone samples, the latticed structure of sample are designed, the silicone material is prepared and the silicone sample are produced by 3D printing and injection molding respectively. Four performance indexes of latticed silicone parts including the error of line width, the error of quality, tensile strength at break and elongation at break are proposed and measured. A fuzzy comprehensive evaluation system for evaluating the optimal forming method of the parts is provided. The performance indexes are used as evaluation factors, and the importance degree of the…
Printability of 3D Printed Hydrogel Scaffolds: Influence of Hydrogel Composition and Printing Parameters
Extrusion-based bioprinting of hydrogel scaffolds is challenging due to printing-related issues, such as the lack of capability to precisely print or deposit hydrogels onto three-dimensional (3D) scaffolds as designed. Printability is an index to measure the difference between the designed and fabricated scaffold in the printing process, which, however, is still under-explored. While studies have been reported on printing hydrogel scaffolds from one or more hydrogels, there is limited knowledge on the printability of hydrogels and their printing processes. This paper presented our study on the printability of 3D printed hydrogel scaffolds, with a focus on identifying the influence of…
Investigation of multiphasic 3D-bioplotted scaffolds for sitespecific chondrogenic and osteogenic differentiation of human adipose-derived stem cells for osteochondral tissue engineering applications
Osteoarthritis is a degenerative joint disease that limits mobility of the affected joint due to the degradation of articular cartilage and subchondral bone. The limited regenerative capacity of cartilage presents significant challenges when attempting to repair or reverse the effects of cartilage degradation. Tissue engineered medical products are a promising alternative to treat osteochondral degeneration due to their potential to integrate into the patient’s existing tissue. The goal of this study was to create a scaffold that would induce site‐specific osteogenic and chondrogenic differentiation of human adipose‐derived stem cells (hASC) to generate a full osteochondral implant. Scaffolds were fabricated using…
3D Printed Wavy Scaffolds Enhance Mesenchymal Stem Cell Osteogenesis
There is a growing interest in developing 3D porous scaffolds with tunable architectures for bone tissue engineering. Surface topography has been shown to control stem cell behavior including differentiation. In this study, we printed 3D porous scaffolds with wavy or linear patterns to investigate the effect of wavy scaffold architecture on human mesenchymal stem cell (hMSC) osteogenesis. Five distinct wavy scaffolds were designed using sinusoidal waveforms with varying wavelengths and amplitudes, and orthogonal scaffolds were designed using linear patterns. We found that hMSCs attached to wavy patterns, spread by taking the shape of the curvatures presented by the wavy patterns,…
2D MXene‐Integrated 3D‐Printing Scaffolds for Augmented Osteosarcoma Phototherapy and Accelerated Tissue Reconstruction
The residual of malignant tumor cells and lack of bone‐tissue integration are the two critical concerns of bone‐tumor recurrence and surgical failure. In this work, the rational integration of 2D Ti3C2 MXene is reported with 3D‐printing bioactive glass (BG) scaffolds for achieving concurrent bone‐tumor killing by photonic hyperthermia and bone‐tissue regeneration by bioactive scaffolds. The designed composite scaffolds take the unique feature of high photothermal conversion of integrated 2D Ti3C2 MXene for inducing bone‐tumor ablation by near infrared‐triggered photothermal hyperthermia, which has achieved the complete tumor eradication on in vivo bone‐tumor xenografts. Importantly, the rational integration of 2D Ti3C2 MXene…
Void‐Free 3D Bioprinting for In Situ Endothelialization and Microfluidic Perfusion
Two major challenges of 3D bioprinting are the retention of structural fidelity and efficient endothelialization for tissue vascularization. Both of these issues are addressed by introducing a versatile 3D bioprinting strategy, in which a templating bioink is deposited layer‐by‐layer alongside a matrix bioink to establish void‐free multimaterial structures. After crosslinking the matrix phase, the templating phase is sacrificed to create a well‐defined 3D network of interconnected tubular channels. This void‐free 3D printing (VF‐3DP) approach circumvents the traditional concerns of structural collapse, deformation, and oxygen inhibition, moreover, it can be readily used to print materials that are widely considered “unprintable.” By…
Mechanical and finite element evaluation of a bioprinted scaffold following recellularization in a rat subcutaneous model
Tissue engineered heart valves (TEHV) provide several advantages over currently available aortic heart valve replacements. Bioprinting provides a patient-specific means of developing a TEHV scaffold from imaging data, and the capability to embed the patient’s own cells within the scaffold. In this work we investigated the remodeling capacity of a collagen-based bio-ink by implanting bioprinted disks in a rat subcutaneous model for 2, 4 and 12 weeks and evaluating the mechanical response using biaxial testing and subsequent finite element (FE) modeling. Samples explanted after 2 and 4 weeks showed inferior mechanical properties compared to native tissues while 12 week explants…
Angiogenic effects of mesenchymal stem cells in combination with different scaffold materials
Tissue survival in regenerative tissue engineering requires rapid vascularization, which is influenced by scaffold material and seeded cell selection. Poly-l-lactide-co-glycolide (PLGA) and beta-tricalcium phosphate (β-TCP) are well-established biomaterials with angiogenic effects because of their material properties. Given the importance of the seeded cell type as a co-factor for vascularization, mesenchymal stem cells (MSCs) are known to have high angiogenic potential. We hypothesized that PLGA and β-TCP scaffolds seeded with MSCs would effectively induce a potent angiogenic response. Therefore, we studied the angiogenic effects after implanting PLGA and β-TCP scaffolds seeded with isogeneic MSCs in vivo. Fifty-six BALB/c mice were equally…
Silicone resin derived larnite/C scaffolds via 3D printing for potential tumor therapy and bone regeneration
Three dimensional (3D) printing has been used to fabricate bioceramic scaffolds for treating the tumor-related defects in recent years, but the fabrication process and the introduction of anti-tumor agents are still challenging. In this study, porous free carbon-embedding larnite (larnite/C) scaffolds have been successfully fabricated by 3D printing of the silicone resin loaded with CaCO3 filler and high temperature treatment under an inert atmosphere. The fabricated larnite/C scaffolds had uniform interconnected macropores (ca. 400 μm), and exhibited excellent photothermal effect, which was able to kill human osteosarcoma cells (MNNG/HOS) and inhibit the tumor growth in nude mice. Moreover, the larnite/C scaffolds…
Modulation of flexible filaments dynamics due to attachment angle relative to the flow
This paper describes experiments carried out in a wind tunnel with three flexible silicone filaments (length to diameter ratio L/D = 50, 100, 150) hanging in crossflow in the range of reduced velocities of 7 < U* < 150 and at various attachment angles (0 ≤ α ≤ 90°) with respect to the flow direction. At low reduced velocities, due to the negligible bending stiffness, the filaments were statically reconfigured but remained mostly rectilinear along their lengths, except for the relatively small bent portion of the filaments close to the upstream fixed end. As the reduced velocity was further increased the filaments started vibrating, but in…
Cell Bioprinting: The 3D-Bioplotter™ Case
The classic cell culture involves the use of support in two dimensions, such as a well plate or a Petri dish, that allows the culture of different types of cells. However, this technique does not mimic the natural microenvironment where the cells are exposed to. To solve that, three-dimensional bioprinting techniques were implemented, which involves the use of biopolymers and/or synthetic materials and cells. Because of a lack of information between data sources, the objective of this review paper is, to sum up, all the available information on the topic of bioprinting and to help researchers with the problematics with…
3D printing of silk fibroin-based hybrid scaffold treated with platelet rich plasma for bone tissue engineering
3D printing/bioprinting are promising techniques to fabricate scaffolds with well controlled and patient-specific structures and architectures for bone tissue engineering. In this study, we developed a composite bioink consisting of silk fibroin (SF), gelatin (GEL), hyaluronic acid (HA), and tricalcium phosphate (TCP) and 3D bioprinted the silk fibroin-based hybrid scaffolds. The 3D bioprinted scaffolds with dual crosslinking were further treated with human platelet-rich plasma (PRP) to generate PRP coated scaffolds. Live/Dead and MTT assays demonstrated that PRP treatment could obviously promote the cell growth and proliferation of human adipose derived mesenchymal stem cells (HADMSC). In addition, the treatment of PRP…
Design of a new 3D‐printed joint plug
This paper introduces a kit of parts as a novel three‐dimensional (3D)–printed joint plug, in which each of the parts function cooperatively to treat cartilage damage in joints of the human body (e.g., hips, wrists, elbow, knee, and ankle). Three required and one optional parts are involved in this plug. The first part is a 3D‐printed hard scaffold (bone portion) to accommodate bone cells, and the second is a 3D‐printed soft scaffold (cartilage portion) overlying the bone portion to accommodate chondrocytes. The third part of joint plug is a permeable membrane, termed film, to cover the entire plug to provide…
3D Bioprinting of the Sustained Drug Release Wound Dressing with Double-Crosslinked Hyaluronic-Acid-Based Hydrogels
Hyaluronic acid (HA)-based hydrogels are widely used in biomedical applications due to their excellent biocompatibility. HA can be Ultraviolet (UV)-crosslinked by modification with methacrylic anhydride (HA-MA) and crosslinked by modification with 3,3′-dithiobis(propionylhydrazide) (DTP) (HA-SH) via click reaction. In the study presented in this paper, a 3D-bioprinted, double-crosslinked, hyaluronic-acid-based hydrogel for wound dressing was proposed. The hydrogel was produced by mixing HA-MA and HA-SH at different weight ratios. The rheological test showed that the storage modulus (G’) of the HA-SH/HA-MA hydrogel increased with the increase in the HA-MA content. The hydrogel had a high swelling ratio and a high controlled degradation…
Employing PEG crosslinkers to optimize cell viability in gel phase bioinks and tailor post printing mechanical properties
The field of 3D bioprinting has rapidly grown, yet the fundamental ability to manipulate material properties has been challenging with current bioink methods. Here, we change bioink properties using our PEG cross-linking (PEGX) bioink method with the objective of optimizing cell viability while retaining control of mechanical properties of the final bioprinted construct. First, we investigate cytocompatible, covalent cross-linking chemistries for bioink synthesis (e.g. Thiol Michael type addition and bioorthogonal inverse electron demand Diels-Alder reaction). We demonstrate these reactions are compatible with the bioink method, which results in high cell viability. The PEGX method is then exploited to optimize extruded…
Fluorescent Carbon‐ and Oxygen‐Doped Hexagonal Boron Nitride Powders as Printing Ink for Anticounterfeit Applications
Increasing demands for optical anticounterfeiting technology require the development of versatile luminescent materials with tunable photoluminescence properties. Herein, a number of fluorescent carbon‐ and oxygen‐doped hexagonal boron nitride (denoted as BCNO) phosphors are found to offer a such high‐tech anticounterfeiting solution. These multicolor BCNO powders, developed in a two‐step process with controlled annealing and oxidation, feature rod‐like particle shape, with varied luminescence properties. Studies of the optical properties of BCNO, along with other characterization, provide insight into this underexplored material. Anticounterfeiting applications are demonstrated with printed patterns which are indistinguishable to the naked eye under visible light but become highly…
3D printing of layered mesoporous bioactive glass/sodium alginate-sodium alginate scaffolds with controllable dual-drug release behaviors
Scaffolds with controlled drug release are valuable for bone tissue engineering, but constructing the scaffolds with controllable dual-drug release behaviors is still a challenge. In this study, layered mesoporous bioactive glass/sodium alginate-sodium alginate (MBG/SA–SA) scaffolds with controllable dual-drug release behaviors were fabricated by 3D printing. The porosity and compressive strength of three-dimensional (3D) printed MBG/SA–SA scaffolds by cross-linking are about 78% and 4.2 MPa, respectively. As two model drugs, bovine serum albumin (BSA) and ibuprofen (IBU) were separately loaded in SA layer and MBG/SA layer, resulting in a relatively fast release of BSA and a sustained release of IBU. Furthermore,…
An oxygen-releasing device to improve the survival of mesenchymal stem cells in tissue engineering
Supplying oxygen to inner areas of cell constructs to support cell proliferation and metabolism is a major challenge in tissue engineering involving stem cells. Developing devices that incorporate oxygen release materials to increase the availability of the localized oxygen supply is therefore key to addressing this limitation. Herein, we designed and developed a 3D-printed oxygen-releasing device composed of an alginate hydrogel scaffold combined with an oxygen-generating biomaterial (calcium peroxide) to improve the oxygen supply of the microenvironment for culturing adipose tissue-derived stem cells. The results demonstrated that the 3D-printed oxygen-releasing device alleviated hypoxia, maintained oxygen availability, and ensured proliferation of…
Additive manufacturing and tissue engineering to improve outcomes in breast reconstructive surgery
Many women with early breast cancer undergo mastectomy as a consequence of an unfavorable tumor/breast ratio or because they prefer this option to breast conservation. As reported, breast reconstruction offers significant psychological advantages. Several techniques are currently available for the breast oncoplastic surgeon and offer interesting results in terms of aesthetic and patient-reported outcomes, using both breast implants and autologous tissues. On the other hand, advanced methodologies and technologies, such as reverse engineering and additive manufacturing, allow the development of customized porous scaffolds with tailored architectures, biological, mechanical and mass transport properties. Accordingly, the current research dealt with challenges, design…
3D printed HUVECs/MSCs cocultures impact cellular interactions and angiogenesis depending on cell-cell distance
Vascularization is a crucial process during the growth and development of bone 1, yet it remains one of the main challenges in the reconstruction of large bone defects. The use of in vitro coculture of human umbilical vein endothelial cells (HUVECs) and human mesenchymal stem cells (hMSCs) has been one of the most explored options. Both cell types secrete specific growth factors that are mutually beneficial, and studies suggested that cell-cell communication and paracrine secretion could be affected by a number of factors. However, little is known about the effect of cell patterning and the distance between cell populations on…
In vivo remodeling of a 3D-Bioprinted tissue engineered heart valve scaffold
Objective To evaluate the recellularization potential of a bioprinted aortic heart valve scaffold printed with highly concentrated Type I collagen hydrogel (Lifeink® 200) and MSCs. Materials and methods A suspension of rat mesenchymal stem cells (MSCs) was mixed with Lifeink® 200 and was 3D-printed into gelatin support gel to produce disk scaffolds which were subsequently implanted subcutaneously in Sprague-Dawley rats for 2, 4, 8, and 12 weeks. The biomechanical properties of the scaffolds were evaluated by uniaxial tensile testing and cell infiltration and inflammation assessed via immunohistochemistry (IHC) and histological staining. Results There was an average decrease in both UTS…
Bioprinting Schwann cell-laden scaffolds from low-viscosity hydrogel compositions
3D bioprinting techniques have been attracting attention for tissue scaffold fabrication in nerve tissue engineering applications. However, due to the inherent complexity of nerve tissues, bioprinting scaffolds that can appropriately promote the regeneration of damaged tissues is still challenging. This paper presents our study on bioprinting Schwann cell-laden scaffolds from low-viscosity hydrogel compositions including RGD modified alginate, hyaluronic acid and fibrin, with a focus on investigating the printability of hydrogel compositions and characterizing the functions of printed scaffolds for potential use in nerve tissue regeneration. We assessed the rheological properties of hydrogel precursors via temperature, time and shear rate sweeps,…
Effect of Polymer Binder on the Synthesis and Properties of 3D-Printable Particle-Based Liquid Materials and Resulting Structures
Recent advances have demonstrated the ability to 3D-print, via extrusion, solvent-based liquid materials (previously named 3D-Paints) which solidify nearly instantaneously upon deposition and contain a majority by volume of solid particulate material. In prior work, the dissolved polymer binder which enables this process is a high molecular weight biocompatible elastomer, poly(lactic-co-glycolic) acid (PLGA). We demonstrate in this study an expansion of this solvent-based 3D-Paint system to two additional, less-expensive, and less-specialized polymers, polystyrene (PS) and polyethylene oxide (PEO). The polymer binder used within the 3D-Paint was shown to significantly affect the as-printed and thermal postprocessing behavior of printed structures. This…
The application of BMP-12-overexpressing mesenchymal stem cells loaded 3D-printed PLGA scaffolds in rabbit rotator cuff repair
This study investigates if the application of bone marrow-derived mesenchymal stem cells (BM-MSCs) loaded 3D-printed scaffolds could improve rotator cuff repair. The polylactic-co-glycolic acid (PLGA) scaffolds were fabricated by 3D print technology. Rabbit BM-MSCs were transfected with a recombinant adenovirus encoding bone morphogenic protein 12 (BMP-12). The effect of BM-MSCs loaded PLGA scaffolds on tendon-bone healing was assessed by biomechanical testing and histological analysis in a rabbit rotator cuff repair model. We found that the PLGA scaffolds had good biocompatible and biodegradable property. Overexpression of BMP-12 increased the mRNA and protein expression of tenogenic genes in BM-MSCs cultured with DMEM…
Fabrication of a conductive composite structure with enhanced stretchability using direct-write 3D printing
High stretchability and mechanical stability are the key properties of a conductive polymer composite structure. In this work, an anisotropic composite is fabricated by wet 3D printing of epoxy crosslinked chitosan/carbon microtubes. The carbon microtubes were synthesized through a high temperature carbonization of chemically purified cellulose fibres. After the chemical treatment and high temperature carbonization, the removal amorphous substrates from the core of cotton fibres results in the formation of a tubular structure. Here, chitosan which is an abundant natural polymer was used as the composite matrix. It was found that the epoxy crosslinking increases the stretchability of composite filaments.
Suturable regenerated silk fibroin scaffold reinforced with 3D-printed polycaprolactone mesh: biomechanical performance and subcutaneous implantation
The menisci have crucial roles in the knee, chondroprotection being the primary. Meniscus repair or substitution is favored in the clinical management of the meniscus lesions with given indications. The outstanding challenges with the meniscal scaffolds include the required biomechanical behavior and features. Suturability is one of the prerequisites for both implantation and implant survival. Therefore, we proposed herein a novel highly interconnected suturable porous scaffolds from regenerated silk fibroin that is reinforced with 3D-printed polycaprolactone (PCL) mesh in the middle, on the transverse plane to enhance the suture-holding capacity. Results showed that the reinforcement of the silk fibroin scaffolds…
System identification and robust tracking of a 3D printed soft actuator
Current three-dimensional (3D) printing allows for the fabrication of controllable 3D printed soft actuators with growing applications in soft robotics, like cell manipulation and drug delivery. Therefore, a precise and computationally efficient control algorithm for robust trajectory tracking of the 3D printed soft actuators has become important. The results of the primary model of the soft actuator deviated from experimental results due to uncertainties such as time-varying characteristics of the actuator. Hence, a second-order type nonsingular terminal sliding mode controller (NTSMC) for robust stabilization and trajectory tracking of the 3D printed actuator is proposed. It is shown via experiments that…
Silk particles, microfibres and nanofibres: A comparative study of their functions in 3D printing hydrogel scaffolds
Silk, with highly crystalline structure and well-documented biocompatibility, is promising to be used as reinforcing material and build functionalized composite scaffolds. In the present study, we developed chitosan/silk composite scaffolds using silk particles, silk microfibres and nanofibres via 3D printing method. The three forms of silk fillers with varied shapes and dimensions were obtained via different processing methods and evaluated of their morphology, crystalline structure and thermal property. All silk fillers showed different degrees of improvement on printability in terms of ink rheology and printing shape fidelity. Different silk fillers led to different scaffold surface morphology and different roughness, while…
An investigation into the relationship between inhomogeneity and wave shapes in phantoms and ex vivo skeletal muscle using Magnetic Resonance Elastography and finite element analysis
Soft biological tissues such as skeletal muscle and brain white matter can be inhomogeneous and anisotropic due to the presence of fibers. Unlike biological tissue, phantoms with known microstructure and defined mechanical properties enable a quantitative assessment and systematic investigation of the influence of inhomogeneities on the nature of shear wave propagation. This study introduces a mathematical measure for the wave shape, which the authors call as the 1-Norm, to determine the conditions under which homogenization may be a valid approach. This is achieved through experimentation using the Magnetic Resonance Elastography technique on 3D printed inhomogeneous fiber phantoms as well…
Bacterial cellulose nanofibers promote stress and fidelity of 3D-printed silk based hydrogel scaffold with hierarchical pores
One of the latest trends in the regenerative medicine is the development of 3D-printing hydrogel scaffolds with biomimetic structures for tissue regeneration and organ reconstruction. However, it has been practically difficult to achieve a highly biomimetic hydrogel scaffolds with proper mechanical properties matching the natural tissue. Here, bacterial cellulose nanofibers (BCNFs) were applied to improve the structural resolution and enhance mechanical properties of silk fibroin (SF)/gelatin composite hydrogel scaffolds. The SF-based hydrogel scaffolds with hierarchical pores were fabricated via 3D-printing followed by lyophilization. Results showed that the tensile strength of printed sample increased significantly with the addition of BCNFs in…
3D Printing of Tissue Engineering Scaffolds with Horizontal Pore and Composition Gradients
This work investigated a new 3D-printing methodology to prepare porous scaffolds containing horizontal pore and composition gradients. To achieve that, a multimaterial printing technology developed in our laboratory was adapted to incorporate pore gradients. Fibers were printed by welding segments with unique material compositions and fiber diameters. Particularly, we focused on the preparation of model composite poly(ε-caprolactone)-based scaffolds with radial gradients of particulate hydroxyapatite (HA) content (higher concentrations in the outer region of the scaffold) and porosity (higher in the inner region). The morphology of the scaffolds revealed that the methodology allowed the fabrication of discrete regions with compressive mechanical…
Carbon Nanodots Doped Super-paramagnetic Iron Oxide Nanoparticles for Multimodal Bioimaging and Osteochondral Tissue Regeneration via External Magnetic Actuation
Super-paramagnetic iron oxide nanoparticles (SPIONs) have multiple theranostics applications such as T2 contrast agent in magnetic resonance imaging (MRI) and electromagnetic manipulations in biomedical devices, sensors, and regenerative medicines. However, SPIONs suffer from the limitation of free radical generation, and this has a certain limitation in its applicability in tissue imaging and regeneration applications. In the current study, we developed a simple hydrothermal method to prepare carbon quantum dots (CD) doped SPIONs (FeCD) from easily available precursors. The nanoparticles are observed to be cytocompatible, hemocompatible, and capable of scavenging free radicals in vitro. They also have been observed to be…
3D printing of free-standing and flexible nitrogen doped graphene/ polyaniline electrode for electrochemical energy storage
Flexible graphene film can be quickly realized by three-dimensional printing (3D printing), which has the potential in functional electronic devices. With a trace of cobalt ions as crosslinker, the graphene oxide sol can be converted into 3D printed ink, overcoming the disadvantage of insufficient viscosity of pure graphene oxide ink. The various graphene architectures were successfully obtained by 3D printing, moreover, graphene/polyaniline composites were obtained by electropolymerization. The specific capacitance of graphene/polyaniline electrode achieved up to 238 F/g at the current density of 0.5 A/g, which was much higher than that of graphene electrode (35 F/g).
Effects of 3-dimensional Bioprinting Alginate/ Gelatin Hydrogel Scaffold Extract on Proliferation and Differentiation of Human Dental Pulp Stem Cells
Abrasive flow machining (AFM) is a nontraditional surface finishing method that finishes complex surface by pushing the abrasive media flow through the workpiece surface. The entrance effect that the material removal increases at the entrance of changing the cross-sectional flow channel is a difficult problem for AFM. In this paper, the effects of media rheological properties on the entrance effect are discussed. To explore the effects of the media’s viscoelasticity on the entrance effect, two sets of media with different viscoelasticity properties are adopted to study their rheological and machining performances in the designed flow channel with a contraction area.…
Printability and Cell Viability in Bioprinting Alginate Dialdehyde- Gelatin Scaffolds
Three-dimensional (3D) bioprinting is a promising technique used to fabricate scaffolds from hydrogels with living cells. However, the printability of hydrogels in bioprinting has not been adequately studied. The aim of this study was to quantitatively characterize the printability and cell viability of alginate dialdehyde (ADA)-gelatin (Gel) hydrogels for bioprinting. ADA-Gel hydrogels of various concentrations were synthesized and characterized using Fourier transform infrared spectroscopy, along with rheological tests for measuring storage and loss moduli. Scaffolds (with an area of 11 × 11 mm) of 1, 2, and 13 layers were fabricated from ADA-Gel hydrogels using a 3D-bioplotter under printing conditions…
Quantitative ultrasound imaging of cell-laden hydrogels and printed constructs
In the present work we have revisited the application of quantitative ultrasound imaging (QUI) to cellular hydrogels, by using the reference phantom method (RPM) in combination with a local attenuation compensation algorithm. The investigated biological samples consisted of cell-laden collagen hydrogels with PC12 neural cells. These cell-laden hydrogels were used to calibrate the integrated backscattering coefficient (IBC) as a function of cell density, which was then used to generate parametric images of local cell density. The image resolution used for QUI and its impact on the relative IBC error was also investigated. Another important contribution of our work was the…
Achieving Molecular Orientation in Thermally Extruded 3D Printed Objects
3D printing is used to fabricate tissue scaffolds. The polymer chains in these objects are typically unoriented. The mechanical properties of these scaffolds can be significantly enhanced by proper alignment of the polymer chains. But, post-processing routes to increase orientation can be limited by the geometry of the printed object. Here we show that it is possible to orient the polymer chains during printing by optimizing the printing parameters to take advantage of the flow characteristics of the polymer. This is demonstrated by printing a polymeric scaffold for meniscus regeneration using poly(desaminotyrosyl-tyrosine dodecyl dodecanedioate), poly(DTD DD). Alignment of the polymer…
3D printing of mesoporous bioactive glass/silk fibroin composite scaffolds for bone tissue engineering
The fabrication of bone tissue engineering scaffolds with high osteogenic ability and favorable mechanical properties is of huge interest. In this study, a silk fibroin (SF) solution of 30 wt% was extracted from cocoons and combined with mesoporous bioactive glass (MBG) to fabricate MBG/SF composite scaffolds by 3D printing. The porosity, compressive strength, degradation and apatite forming ability were evaluated. The results illustrated that MBG/SF scaffolds had superior compressive strength (ca. 20 MPa) and good biocompatibility, and stimulated bone formation ability compared to mesoporous bioactive glass/polycaprolactone (MBG/PCL) scaffolds. We subcutaneously transplanted hBMSCs-loaded MBG/SF and MBG/PCL scaffolds into the back of nude mice…
3D printed, controlled release, tritherapeutic tablet matrix for advanced anti-HIV-1 drug delivery
Purpose A 3D-Bioplotter® was employed to 3D print (3DP) a humic acid-polyquaternium 10 (HA-PQ10) controlled release fixed dose combination (FDC) tablet comprising of the anti-HIV-1 drugs, efavirenz (EFV), tenofovir disoproxil fumarate (TDF) and emtricitabine (FTC). Methods Chemical interactions, surface morphology and mechanical strength of the FDC were ascertained. In vitro drug release studies were conducted in biorelevant media followed by in vivo study in the large white pigs, in comparison with a market formulation, Atripla®. In vitro-in vivo correlation of results was undertaken. Results EFV, TDF and FTC were successfully entrapped in the 24-layered rectangular prism-shaped 3DP FDC with a…
Engineering patient-specific bioprinted constructs for treatment of degenerated intervertebral disc
Lower back pain (LBP), which is strongly associated with intervertebral disc (IVD) degeneration, is one of the most frequently reported age- and work-related disorder in actual society, leading to a huge socio-economic impact worldwide. The current treatments have poor clinical outcomes and do not consider each patient needs. Thus, there is a growing interest in the potential of personalized cell-based tissue engineering (TE) approaches aimed to regenerate the damaged IVD and efficiently restore full disc function. In this work, a bioink composed by silk fibroin (SF) hydrogel combined with elastin was used to bioprint patient-specific substitutes mimicking IVD ultrastructure, in…
3D ink-extrusion additive manufacturing of CoCrFeNi high-entropy alloy micro-lattices
Additive manufacturing of high-entropy alloys combines the mechanical properties of this novel family of alloys with the geometrical freedom and complexity required by modern designs. Here, a non-beam approach to additive manufacturing of high-entropy alloys is developed based on 3D extrusion of inks containing a blend of oxide nanopowders (Co3O4 + Cr2O3 + Fe2O3 + NiO), followed by co-reduction to metals, inter-diffusion and sintering to near-full density CoCrFeNi in H2. A complex phase evolution path is observed by in-situ X-ray diffraction in extruded filaments when the oxide phases undergo reduction and the resulting metals inter-diffuse, ultimately forming face-centered-cubic equiatomic CoCrFeNi alloy. Linked to the phase evolution…
Wet 3‐D printing of epoxy cross‐linked chitosan/carbon microtube composite
Over the last decays, the use of conductive biopolymer composites has been growing in areas such as biosensors, soft robotics, and wound dressing applications. They are generally soft hydrophilic materials with good elastic recovery and compatible with biological environments. However, their application and removal from the host are still challenging mainly due to poor mechanical strength. This work displays a technique for the fabrication of complex‐shaped conductive structures with improved mechanical strength by wet three‐dimensional (3‐D) printing, which uses a coagulation bath to quickly solidify an epoxy cross‐linked chitosan/carbon microtube composite ink. The fabricated conductive structure demonstrated higher elongation strength…
Implantable Nanotube Sensor Platform for Rapid Analyte Detection
The use of nanoparticles within living systems is a growing field, but the long‐term effects of introducing nanoparticles to a biological system are unknown. If nanoparticles remain localized after in vivo implantation unanticipated side effects due to unknown biodistribution can be avoided. Unfortunately, stabilization and retention of nanoparticles frequently alters their function.1 In this work multiple hydrogel platforms are developed to look at long‐term localization of nanoparticle sensors with the goal of developing a sensor platform that will stabilize and localize the nanoparticles without altering their function. Two different hydrogel platforms are presented, one with a liquid core of sensors…
3D printed β-TCP scaffold with sphingosine 1-phosphate coating promotes osteogenesis and inhibits inflammation
Traditional treatments for bone repair with allografts and autografts are limited by the source of bone substitutes. Bone tissue engineering via a cell-based bone tissue scaffold is a new strategy for treatment against large bone defects with many advantages, such as the accessibility of biomaterials, good biocompatibility and osteoconductivity; however, the inflammatory immune response is still an issue that impacts osteogenesis. Sphingosine 1-phosphate (S1P) is a cell-derived sphingolipid that can mediate cell proliferation, immunoregulation and bone regeneration. We hypothesised that coating S1P on a β-Tricalcium phosphate (β-TCP) scaffold could regulate the immune response and increase osteogenesis. We tested the immunoregulation…
Novel Strategy to Accelerate Bone Regeneration of Calcium Phosphate Cement by Incorporating 3D Plotted Poly(lactic‐co‐glycolic acid) Network and Bioactive Wollastonite
Inefficient bone regeneration of self‐hardening calcium phosphate cement (CPC) increases the demand for interconnected macropores and osteogenesis‐stimulated substances. It remains a challenge to fabricate porous CPC with interconnected macropores while maintaining its advantages, such as plasticity. Herein, pastes containing CPC and wollastonite (WS) are infiltrated into a 3D plotted poly(lactic‐co‐glycolic acid) (PLGA) network to fabricate plastic CPC‐based composite cement (PLGA/WS/CPC). The PLGA/WS/CPC recovers the plasticity of CPC after being heated above the glass transition temperature of PLGA. The presence of the 3D PLGA network significantly increases the flexibility of CPC in prophase and generates 3D interconnected macropores in situ upon…
3D-printed ternary SiO2CaOP2O5 bioglass-ceramic scaffolds with tunable compositions and properties for bone regeneration
Simple ternary SiO2CaOP2O5 bioglasses proved sufficient osteogenesis capacity. In this study, the bioglasses were 3D printed into porous scaffolds and SiO2/CaO molar ratio was altered (from 90/5 to 60/35) to achieve tunable glass-ceramic compositions after thermal treatment. Scaffolds possessed interconnected porous structure with controllable porosities via 3D printing technique. In addition, microstructure and properties of mechanical strength, degradation, ion dissolution and apatite formation were investigated. Characterization results showed that higher content of SiO2 produced more homogeneous crystalline particles and sintering compactness, thus led to higher strength. For scaffolds with higher CaO content, more glasses were maintained and faster degradation rate…
Development of surface functionalization strategies for 3D‐printed polystyrene constructs
There is a growing interest in 3D printing to fabricate culture substrates; however, the surface properties of the scaffold remain pertinent to elicit targeted and expected cell responses. Traditional 2D polystyrene (PS) culture systems typically require surface functionalization (oxidation) to facilitate and encourage cell adhesion. Determining the surface properties which enhance protein adhesion from media and cellular extracellular matrix (ECM) production remains the first step to translating 2D PS systems to a 3D culture surface. Here we show that the presence of carbonyl groups to PS surfaces correlated well with successful adhesion of ECM proteins and sustaining ECM production of…
Osteostatin potentiates the bioactivity of mesoporous glass scaffolds containing Zn2+ ions in human mesenchymal stem cells
There is an urgent need of biosynthetic bone grafts with enhanced osteogenic capacity. In this study, we describe the design of hierarchical meso-macroporous 3D-scaffolds based on mesoporous bioactive glasses (MBGs), enriched with the peptide osteostatin and Zn2+ ions, and their osteogenic effect on human mesenchymal stem cells (hMSCs) as a preclinical strategy in bone regeneration. The MBG compositions investigated were 80%SiO2–15%CaO–5%P2O5 (in mol-%) Blank (BL), and two analogous glasses containing 4% ZnO (4ZN) and 5% ZnO (5ZN). By using additive fabrication techniques, scaffolds exhibiting hierarchical porosity: mesopores (around 4 nm), macropores (1–600 μm) and big channels (∼1000 μm), were prepared. These MBG scaffolds…
3D Bioprinted Scaffolds Containing Viable Macrophages and Antibiotics Promote Clearance of Staphylococcus aureus Craniotomy-Associated Biofilm Infection
Craniotomy involves the removal of a skull fragment to access the brain, such as during tumor or epilepsy surgery, which is immediately replaced intraoperatively. The infection incidence after craniotomy ranges from 0.8 to 3%, with approximately half caused by Staphylococcus aureus (S. aureus). To mitigate infectious complications following craniotomy, we engineered a three-dimensional (3D) bioprinted bone scaffold to harness the potent antibacterial activity of macrophages (MΦs) together with antibiotics using a mouse S. aureus craniotomy-associated biofilm model that establishes a persistent infection on the bone flap, subcutaneous galea, and brain. The 3D scaffold contained rifampin and daptomycin printed in a…
Fabrication and mechanical characterization of 3D printed vertical uniform and gradient scaffolds for bone and osteochondral tissue engineering
Recent developments in 3D printing (3DP) research have led to a variety of scaffold designs and techniques for osteochondral tissue engineering; however, the simultaneous incorporation of multiple types of gradients within the same construct remains a challenge. Herein, we describe the fabrication and mechanical characterization of porous poly(ε-caprolactone) (PCL) and PCL-hydroxyapatite (HA) scaffolds with incorporated vertical porosity and ceramic content gradients via a multimaterial extrusion 3DP system. Scaffolds of 0 wt% HA (PCL), 15 wt% HA (HA15), or 30 wt% HA (HA30) were fabricated with uniform composition and porosity (using 0.2 mm, 0.5 mm, or 0.9 mm on-center fiber spacing), uniform composition and gradient porosity, and…
3D printing of poly(vinylidene fluoride-trifluoroethylene): a poling-free technique to manufacture flexible and transparent piezoelectric generators
Flexible piezoelectric generators (PEGs) present a unique opportunity for renewable and sustainable energy harvesting. Here, we present a low-temperature and low-energy deposition method using solvent evaporation-assisted three-dimensional printing to deposit electroactive poly(vinylidene fluoride) (PVDF)-trifluoroethylene (TrFE) up to 19 structured layers. Visible-wavelength transmittance was above 92%, while ATR-FTIR spectroscopy showed little change in the electroactive phase fraction between layer depositions. Electroactivity from the fabricated PVDF-TrFE PEGs showed that a single structured layer gave the greatest output at 289.3 mV peak-to-peak voltage. This was proposed to be due to shear-induced polarization affording the alignment of the fluoropolymer dipoles without an electric field…
Indirect 3D bioprinting and characterization of alginate scaffolds for potential nerve tissue engineering applications
Low-concentration hydrogels have favorable properties for many cell functions in tissue engineering but are considerably limited from a scaffold fabrication point of view due to poor three-dimensional (3D) printability. Here, we developed an indirect-bioprinting process for alginate scaffolds and characterized the potential of these scaffolds for nerve tissue engineering applications. The indirect-bioprinting process involves (1) printing a sacrificial framework from gelatin, (2) impregnating the framework with low-concentration alginate, and (3) removing the gelatin framework by an incubation process, thus forming low-concentration alginate scaffolds. The scaffolds were characterized by compression testing, swelling, degradation, and morphological and biological assessment of incorporated or…
A method to deliver patterned electrical impulses to Schwann cells cultured on an artificial axon
Information from the brain travels back and forth along peripheral nerves in the form of electrical impulses generated by neurons and these impulses have repetitive patterns. Schwann cells in peripheral nerves receive molecular signals from axons to coordinate the process of myelination. There is evidence, however, that non-molecular signals play an important role in myelination in the form of patterned electrical impulses generated by neuronal activity. The role of patterned electrical impulses has been investigated in the literature using co-cultures of neurons and myelinating cells. The co-culturing method, however, prevents the uncoupling of the direct effect of patterned electrical impulses…
Hydroxyapatite /Collagen 3D printed Scaffolds and their Osteogenic Effects on hBMSCs
3D printing provides a novel approach to repair bone defects using customized biomimetic tissue scaffolds. To make a bone substitute closest to natural bone structure and composition, two different types of hydroxyapatite, Nano hydroxyapatite (nHA) and deproteinized bovine bone (DBB), were dispersed into collagen (CoL) to prepare the bio-ink for 3D printing. In doing so, a porous architecture was manufactured with 3D printing technology. The physical and chemical properties of the materials were evaluated, including biocompatibility and effect on the osteogenic differentiation of the human bone marrow-derived mesenchyme stem cells (hBMSCs). The XPS, XRD, FTIR, and the mechanical analysis of…
Nanogrooved carbon microtubes for wet 3D printing of conductive composite structures
Recent advances in 3D printing have enabled the fabrication of interesting structures which were not achievable using traditional fabrication approaches. 3D printing of carbon microtube composite inks allows fabrication of conductive structures for practical applications in soft robotics and tissue engineering. However, it is challenging to achieve 3D printed structures from solution‐based composite inks which requires an additional process to solidify the ink. Here, we introduce a wet 3D printing technique which uses a coagulation bath to fabricate carbon microtube composite structures. We show that through facile nanogrooving approach which introduces cavitation and channels on carbon microtubes, enhanced interfacial interactions…
Bending Control of a 3D Printed Polyelectrolyte Soft Actuator with Uncertain Model
Introduction of 3-dimensional (3D) printing in fabrication and increasing applications of intriguing products in soft robotics have led to studies on controllable 3D printed soft actuators. Therefore, a demand for a precise and computationally efficient model for bending control of the 3D printed soft actuators has arisen. This study initially used a grey box strategy for dynamic modeling of a 3D printed soft actuator which undergoes large bending deformations. Yet, the primary model estimated results deviated from experimental results due to uncertainties such as hysteresis and time varying characteristics of the soft actuator in presence of electric field. Thus, a…
Bio-fabrication of peptide-modified alginate scaffolds: Printability, mechanical stability and neurite outgrowth assessments
Peripheral nerve tissue requires appropriate biochemical and physical cues to guide the regeneration process after injury. Bioprinted peptide-conjugated sodium alginate (PCSA) scaffolds have the potential to provide physical and biochemical cues simultaneously. Such scaffolds need characterisation in terms of printability, mechanical stability, and biological performance to refine and improve application in nerve tissue regeneration. In this study, it was hypothesized that 3D scaffold printed with low concentrated multiple PCSA precursor would be supportive for axon outgrowth. Therefore, a 2% (w/v) alginate precursor was conjugated with either arginine-glycine-aspartate (RGD) or tyrosine-isoleucine-glycine-serine-arginine (YIGSR) peptides, or a mixture of RGD and YIGSR (1:2)…
Development of 3D-printed PLGA/TiO2 nanocomposite scaffolds for bone tissue engineering applications
Porous scaffolds were 3D-printed using poly lactic-co-glycolic acid (PLGA)/TiO2 composite (10:1 weight ratio) for bone tissue engineering applications. Addition of TiO2 nanoparticles improved the compressive modulus of scaffolds. Differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) revealed an increase in both glass transition temperature and thermal decomposition onset of the composite compared to pure PLGA. Furthermore, addition of TiO2 was found to enhance the wettability of the surface evidenced by reducing the contact angle from 90.5 ± 3.2 to 79.8 ± 2.4 which is in favor of cellular attachment and activity. The obtained results revealed that PLGA/TiO2 scaffolds significantly improved osteoblast proliferation compared to…
3D Printing of Elastomeric Biomaterials
A key challenge towards engineering 3D printed soft tissues is the availability of proper scaffolding materials with enough load carrying capacity. In this study, we synthesized biocompatible and biodegradable, elastomeric polyurethaneureas (TPUU) and investigated the applicability of these novel materials as 3D printed load carrying constructs.
Anisotropic composite material phantom to improve skeletal muscle characterization using magnetic resonance elastography
The presence and progression of neuromuscular pathology, including spasticity, Duchenne’s muscular dystrophy and hyperthyroidism, has been correlated with changes in the intrinsic mechanical properties of skeletal muscle tissue. Tools for noninvasively measuring and monitoring these properties, such as Magnetic Resonance Elastography (MRE), could benefit basic research into understanding neuromuscular pathologies, as well as translational research to develop therapies, by providing a means of assessing and tracking their efficacy. Dynamic elastography methods for noninvasive measurement of tissue mechanical properties have been under development for nearly three decades. Much of the technological development to date, for both Ultrasound (US)-based and Magnetic Resonance…
3D-printed scaffolds of biomineralized hydroxyapatite nanocomposite on silk fibroin for improving bone regeneration
In an attempt to fabricate biomimetic bone repair scaffolds and improve bone regeneration point of view, we have three dimensionally printed porous scaffolds with biomineralized hydroxyapatite/silk fibroin nanocomposites. SF/HA composite particles were firstly produced via an in-situ mineral precipitation process when SF molecules were served as templates.. Microscopy observations of SF/HA showed homogeneous morphology and narrowly distributed size. By using sodium alginate (SA) as paste binder, scaffolds with different contents of SF/HA were subsequently 3D-printed under proper conditions. All the scaffolds were porous with 3D interconnected large pores (size ~400 μm) and an overall porosity about 70%, combined with a relative…
3D-printable self-healing and mechanically reinforced hydrogels with host–guest non-covalent interactions integrated into covalently linked networks
Natural polymer hydrogels are one of the best biomaterials for soft tissue repair because of their excellent biocompatibility, biodegradability and low immune rejection. However, they lack mechanical strength matching that of natural tissue and desired functionality (e.g., self-healing and 3D-printability). To solve these problems, we developed a host–guest supramolecule (HGSM) with three arms covalently crosslinked with a natural polymer to construct a novel hydrogel with non-covalent bonds integrated into a covalently crosslinked network. This unique structure enabled the hydrogel to exhibit improved mechanical properties and show both self-healing and 3D printing capabilities. The three-armed HGSM was first prepared via efficient…
Extrudability analysis of drug loaded pastes for 3D printing of modified release tablets
The rheological characteristics of pastes for 3D printing of tablets may not be described fully by the traditional rheological tests generally used for other pastes. In the present study, extrudability testing of carbopol based 3D printing pastes was performed to establish a constitutive rheological model for micro-extrusion. This model was developed for pastes that exhibit a non-linear plasto-viscoelastic behavior and follow the generalized Herschel–Bulkley flow rule. An analytical model was applied to extrudability data obtained by micro-extrusion through nozzles of 0.4 and 0.6 mm diameters. For this purpose, nineteen pastes were prepared per a fractional factorial design using various concentrations of…
Rigid elements dynamics modeling of a 3D printed soft actuator
Due to the growing interest in three-dimensional (3D) printed soft actuators, the establishment of an appropriate mathematical model that could effectively predict the actuators’ dynamic behavior has become necessary. This study presents the development of an effective modeling strategy for the dynamic analysis of a 3D printed polyelectrolyte actuator undergoing large bending deformations. The proposed model is composed of two parts, namely electrical and mechanical dynamic models. The electrical model describes the actuator as a gray box model, whereas the mechanical model relates the stored charges to the bending displacement through considering the printed actuator as a discretized system connected…
Development of mechanistic models to identify critical formulation and process variables of pastes for 3D printing of modified release tablets
The future of pharmaceutical manufacturing may be significantly transformed by 3-dimensional (3D) printing. As an emerging technology, the indicators of quality for materials and processes used in 3D printing have not been fully established. The objective of this study was to identify the critical material attributes of semisolid paste formulations filled into cartridges for 3D printing of personalized medicine. Nineteen semisolid formulations were prepared per a fractional factorial design with three replicates of the center point. The variables investigated included percent loading of API and various soluble and insoluble excipients. Pastes were characterized for viscoelastic characteristics during the 3D printing…
I-Optimal Design of Hierarchical 3D Scaffolds Produced by Combining Additive Manufacturing and Thermally Induced Phase Separation
The limitations in the transport of oxygen, nutrients, and metabolic waste products pose a challenge to the development of bioengineered bone of clinically relevant size. This paper reports the design and characterization of hierarchical macro/microporous scaffolds made of poly(lactic-co-glycolic) acid and nanohydroxyapatite (PLGA/nHA). These scaffolds were produced by combining additive manufacturing (AM) and thermally induced phase separation (TIPS) techniques. Macrochannels with diameters of ∼300 μm, ∼380 μm, and ∼460 μm were generated by embedding porous 3D-plotted polyethylene glycol (PEG) inside PLGA/nHA/1,4-dioxane or PLGA/1,4-dioxane solutions, followed by PEG extraction using deionized (DI) water. We have used an I-optimal design of experiments…
Homogeneous hydroxyapatite/alginate composite hydrogel promotes calcified cartilage matrix deposition with potential for three-dimensional bioprinting
Calcified cartilage regeneration plays an important role in successful osteochondral repair, since it provides a biological and mechanical transition from the unmineralized cartilage at the articulating surface to the underlying mineralized bone. To biomimic native calcified cartilage in engineered constructs, here we test the hypothesis that hydroxyapatite (HAP) stimulates chondrocytes to secrete the characteristic matrix of calcified cartilage. Sodium citrate (SC) was added as a dispersant of HAP within alginate (ALG), and homogeneous dispersal of HAP within ALG hydrogel was confirmed using sedimentation tests, electron microscopy, and energy dispersive spectroscopy. To examine the biological performance of ALG/HAP composites, chondrocyte survival…
Microstructure and porosity evolution during sintering of Ni-Mn-Ga wires printed from inks containing elemental powders
Ni-29Mn-21.5Ga (at. %) wires are fabricated via a combination of (i) extrusion of liquid inks containing a binder, solvents, and elemental Ni, Mn, and Ga powders and (ii) heat treatments to remove the polymer binder and to interdiffuse and sinter the powders. To study the microstructural evolution, sintering mechanisms, and grain growth in these wires, both ex situ metallography and in situ X-Ray tomography were conducted while sintering at 800–1050 °C for up to 4 h. After debinding, Ga-rich regions melt and induce transient liquid phase sintering of the surrounding Ni and Mn powders, resulting in localized swelling of the wires and…
Precision lattice parameter determination from transmission diffraction of thick specimens with irregular cross sections
Accurate determination of lattice parameters from X-ray diffraction requires that the diffraction angles be measured very precisely, and significant errors result if the sample–detector separation differs from that assumed. Transmission diffraction from bones, which have a complex cross section and must be left intact, is a situation where this separation is difficult to measure and it may differ from position to position across the specimen. This article describes a method for eliminating the effect of variable sample cross section. Diffraction patterns for each position on the specimen are collected before and after 180° rotation about an axis normal to the…
Directing the growth and alignment of biliary epithelium within extracellular matrix hydrogels
Three-dimensional (3D) printing of decellularized extracellular matrix (dECM) hydrogels is a promising technique for regenerative engineering. 3D-printing enables the reproducible and precise patterning of multiple cells and biomaterials in 3D, while dECM has high organ-specific bioactivity. However, dECM hydrogels often display poor printability on their own and necessitate additives or support materials to enable true 3D structures. In this study, we used a sacrificial material, 3D-printed Pluronic F-127, to serve as a platform into which dECM hydrogel can be incorporated to create specifically designed structures made entirely up of dECM. The effects of 3D dECM are studied in the context…
Polyester-based ink platform with tunable bioactivity for 3D printing of tissue engineering scaffolds
In this work, we synthesized a novel polymeric biomaterial platform with tunable functionalizability for extrusion-based 3D printing. Biodegradable polymers were synthesized using 4-hydroxyphenethyl 2-(4-hydroxyphenyl)acetate (HTy), which is derived from Tyrosol and 2-(4-hydroxyphenyl)acetic acid. p-Phenylenediacetic acid (PDA) was introduced to enhance crystallinity. To enable functionalizability without deteriorating printability, glutamic acid derivatives were introduced into the polymer design, forming copolymers including poly(HTy-co-45%PDA-co-5%Gluhexenamide ester) (HP5GH), poly(HTy-co-45%PDA-co-5%Glupentynamide ester) (HP5GP), and poly(HTy-co-45%PDA-co-5%BocGlu ester) (HP5BG). The resulting polymers have: two melting temperatures (125–131 °C and 141–147 °C), Young’s moduli of 1.9–2.4 GPa, and print temperatures of 170–190 °C. The molecular weight (Mw) loss due to hydrolytic…
Effect of Dexamethasone on Room Temperature Three-Dimensional Printing, Rheology, and Degradation of a Low Modulus Polyester for Soft Tissue Engineering
Three-dimensional (3D) printing has enabled benchtop fabrication of customized bioengineered constructs with intricate architectures. Various approaches are being explored to enable optimum integration of such constructs into the physiological environment including addition of bioactive fillers. In this work, we incorporated a corticosteroid drug, dexamethasone (Dex), in a low modulus polyester (SC5050) and examined the effect of Dex incorporation on solvent-, initiator-, and monomer-free pneumatic extrusion-based 3D printing of the polymer. Dex–SC5050 interactions were characterized by plotting thermodynamic binary phase diagrams based on the Flory–Huggins theory. The effect of Dex composition on the 3D printability of the SC5050 polyester was examined…
Multimaterial Segmented Fiber Printing for Gradient Tissue Engineering
In this work, we present a printing method to fabricate scaffolds consisting of multimaterial segmented fibers. Particularly, we developed a reproducible printing process to create single fibers with multiple discrete compositions and control over the distribution of particulate ceramics—namely hydroxyapatite (HA) and β-tricalcium phosphate (TCP)—within poly(ɛ-caprolactone)-based composite scaffolds. Tensile testing revealed that the mechanical integrity of individual segmented fibers was preserved compared with nonsegmented fibers, and microcomputed tomography and thermal analysis confirmed the homogeneous distribution of ceramics incorporated in the fiber compositions. Moreover, we printed and characterized composite scaffolds containing model inverse radial gradients of HA and TCP that could…
On-demand manufacturing of immediate release levetiracetam tablets using pressure-assisted microsyringe printing
Fast and accurate manufacturing of individually tailored solid dosage forms is one of the main challenges for personalized medicine. The use of 3D printers has recently been studied to determine their suitability for personalized drug manufacturing. In the current work, formulations free of organic solvents were developed for a pressure-assisted microsyringe printing method (PAM). The water soluble polymer polyvinyl alcohol-polyethylene glycol graft copolymer (PVA-PEG) was used as matrix, while levetiracetam (LEV) was used as model drug. Furthermore, the influence of a second polymer, polyvinylpyrrolidone-vinyl acetate copolymer (PVP-PVAc) on the properties of the printed tablets was investigated. Tablets were printed using…
3D extruded composite thermoelectric threads for flexible energy harvesting
Whereas the rigid nature of standard thermoelectrics limits their use, flexible thermoelectric platforms can find much broader applications, for example, in low-power, wearable energy harvesting for internet-of-things applications. Here we realize continuous, flexible thermoelectric threads via a rapid extrusion of 3D-printable composite inks (Bi2Te3 n- or p-type micrograins within a non-conducting polymer as a binder) followed by compression through a roller-pair, and we demonstrate their applications in flexible, low-power energy harvesting. The thermoelectric power factors of these threads are enhanced up to 7 orders-of-magnitude after lateral compression, principally due to improved conductivity resulting from reduced void volume fraction and partial…
Doping of Carbon Quantum Dots (CDs) in Calcium Phosphate Nanorods for Inducing Ectopic Chondrogenesis via Activation of the HIF-α/SOX‑9 Pathway
Calcium phosphate (CaPs)-based nanostructures are mostly known to induce osteogenic differentiation of mesenchymal stem cells (MSCs). However, in the current study, doping of carbon quantum dots into calcium phosphate nanorods (C-CaPs) has been observed to affect the differentiation pathway and enhanced the expression of chondrogenic genes instead of osteogenic ones. Here, we report a microwave-assisted single-step synthesis and doping of carbon dot into calcium phosphate nanorods and their ectopic chondrogenicity in a rodent subcutaneous model. High-resolution transmission electron microscopy, X-ray powder diffraction, and X-ray photoelectron spectroscopy studies show that the doping of carbon dots results in p-type semiconductor-like structure formation…
ZEB2, a master regulator of the epithelial-mesenchymal transition, mediates trophoblast differentiation
STUDY QUESTION Does the upregulation of the zinc finger E-box binding homeobox 2 (ZEB2) transcription factor in human trophoblast cells lead to alterations in gene expression consistent with an epithelial-mesenchymal transition (EMT) and a consequent increase in invasiveness? SUMMARY ANSWER Overexpression of ZEB2 results in an epithelial-mesenchymal shift in gene expression accompanied by a substantial increase in invasive capacity of human trophoblast cells.
Anisotropic Composite Material Phantom Tested Using Magnetic Resonance Elastography
Background: The presence and progression of neuromuscular pathologies, including spasticity, dystrophy and hyperthyroidism, have been correlated with changes in the intrinsic mechanical properties of skeletal muscle tissue. Tools of noninvasively measuring and monitoring these properties, such as Magnetic Resonance Elastography (MRE), could benefit basic research into understanding neuromuscular pathologies, as well as translational research to develop therapies, by providing a means of assessing and tracking their efficacy. While various approaches have been proposed in the literature [1,2], there is not yet an accepted standard for the identification of the mechanical properties of anisotropic and viscoelastic tissues through MRE; advances in…
Reversible physical crosslinking strategy with optimal temperature for 3D bioprinting of human chondrocyte-laden gelatin methacryloyl bioink
Gelatin methacryloyl is a promising material in tissue engineering and has been widely studied in three-dimensional bioprinting. Although gelatin methacryloyl possesses excellent biocompatibility and tunable mechanical properties, its poor printability/processability has hindered its further applications. In this study, we report a reversible physical crosslinking strategy for precise deposition of human chondrocyte-laden gelatin methacryloyl bioink at low concentration without any sacrificial material by using extrusive three-dimensional bioprinting. The precise printing temperature was determined by the rheological properties of gelatin methacryloyl with temperature. Ten percent (w/v) gelatin methacryloyl was chosen as the printing formula due to highest biocompatibility in three-dimensional cell cultures…
Defect-engineered reduced graphene oxide sheets with high electric conductivity and controlled thermal conductivity for soft and flexible wearable thermoelectric generators
The direct use of graphene for potential thermoelectric material requires the opening of its bandgap without loss of its high electric conductivity. We herein demonstrate a synchronous reduction and assembly strategy to fabricate large-area reduced graphene oxide films with high electric conductivity and optimized low thermal conductivity assembly. The reduced graphene oxide films have a high electric conductivity and low thermal conductivity, which results from high longitudinal carrier mobility of the lattice domains as well as the enhanced scattering of phonons in the defects and their boundary that substantially reduces the mean phonon free path and the thermal conductivity. Flexible…
Coating 3D Printed Polycaprolactone Scaffolds with Nanocellulose Promotes Growth and Differentiation of Mesenchymal Stem Cells
3D printed polycaprolactone (PCL) has potential as a scaffold for bone tissue engineering, but the hydrophobic surface may hinder optimal cell responses. The surface properties can be improved by coating the scaffold with cellulose nanofibrils material (CNF), a multiscale hydrophilic biocompatible biomaterial derived from wood. In this study, human bone marrow-derived mesenchymal stem cells were cultured on tissue culture plates (TCP) and 3D printed PCL scaffolds coated with CNF. Cellular responses to the surfaces (viability, attachment, proliferation, and osteogenic differentiation) were documented. CNF significantly enhanced the hydrophilic properties of PCL scaffolds and promoted protein adsorption. Live/dead staining and lactate dehydrogenase…
Tough and Processable Hydrogels Based on Lignin and Hydrophilic Polyurethane
Lignin is a low-cost, natural polymer with abundant polar sites on its backbone that can be utilized for physical cross-linking of polymers. Here, we use lignin for additional cross-linking of hydrophilic polyether-based polyurethane (HPU) hydrogels, aiming to improve their mechanical properties and processability. Without reducing the swelling, simple addition of 2.5 wt % lignin increases the fracture energy and Young’s modulus of HPU hydrogels from, respectively, 1540 ± 40 to 2050 ± 50 J m–2 and 1.29 ± 0.06 to 2.62 ± 0.84 MPa. Lignin also increases the lap shear adhesiveness of hydrogels and induces an immediate load recovery of…
Trophoblast–endothelium signaling involves angiogenesis and apoptosis in a dynamic bioprinted placenta model
Trophoblast invasion and remodeling of the maternal spiral arteries are required for pregnancy success. Aberrant endothelium–trophoblast crosstalk may lead to preeclampsia, a pregnancy complication that has serious effects on both the mother and the baby. However, our understanding of the mechanisms involved in this pathology remains elementary because the current in vitro models cannot describe trophoblast–endothelium interactions under dynamic culture. In this study, we developed a dynamic three‐dimensional (3D) placenta model by bioprinting trophoblasts and an endothelialized lumen in a perfusion bioreactor. We found the 3D printed perfusion bioreactor system significantly augmented responses of endothelial cells by encouraging network formations…
3D Printing Bioactive PLGA Scaffolds Using DMSO as a Removable Solvent
Present bioprinting techniques lack the methodology to print with bioactive materials that retain their biological functionalities. This constraint is due to the fact that extrusion-based printing of synthetic polymers is commonly performed at very high temperatures in order to achieve desired mechanical properties and printing resolutions. Consequently, current methodology prevents printing scaffolds embedded with bioactive molecules, such as growth factors. With the wide use of mesenchymal stem cells (MSCs) in regenerative medicine research, the integration of growth factors into 3D printed scaffolds is critical because it can allow for inducible MSC differentiation. We have successfully incorporated growth factors into extrusion…
A Bioprinted Cardiac Patch Composed of Cardiac-Specific Extracellular Matrix and Progenitor Cells for Heart Repair
Congenital heart defects are present in 8 of 1000 newborns and palliative surgical therapy has increased survival. Despite improved outcomes, many children develop reduced cardiac function and heart failure requiring transplantation. Human cardiac progenitor cell (hCPC) therapy has potential to repair the pediatric myocardium through release of reparative factors, but therapy suffers from limited hCPC retention and functionality. Decellularized cardiac extracellular matrix hydrogel (cECM) improves heart function in animals, and human trials are ongoing. In the present study, a 3D‐bioprinted patch containing cECM for delivery of pediatric hCPCs is developed. Cardiac patches are printed with bioinks composed of cECM, hCPCs,…
Tyrosinase-doped bioink for 3D bioprinting of living skin constructs
Three-dimensional bioprinting is an emerging technology for fabricating living 3D constructs, and it has shown great promise in tissue engineering. Bioinks are scaffold materials mixed with cells used by 3D bioprinting to form a required cell-laden structure. In this paper, a novel bioink made of gelatin methacrylamide (GelMA) and collagen (Col) doped with tyrosinase (Ty) is presented for the 3D bioprinting of living skin tissues. Ty has the dual function of being an essential bioactive compound in the skin regeneration process and also as an enzyme to facilitate the crosslink of Col and GelMA. Further, enzyme crosslinking together with photocrosslinking…
3D printed soft parallel actuator
This paper presents a 3-dimensional (3D) printed soft parallel contactless actuator for the first time. The actuator involves an electro-responsive parallel mechanism made of two segments namely active chain and passive chain both 3D printed. The active chain is attached to the ground from one end and constitutes two actuator links made of responsive hydrogel. The passive chain, on the other hand, is attached to the active chain from one end and consists of two rigid links made of polymer. The actuator links are printed using an extrusion-based 3D-Bioplotter with polyelectrolyte hydrogel as printer ink. The rigid links are also…
Voltaglue Bioadhesives Energized with Interdigitated 3D‐Graphene Electrodes
Soft tissue fixation of implant and bioelectrodes relies on mechanical means (e.g., sutures, staples, and screws), with associated complications of tissue perforation, scarring, and interfacial stress concentrations. Adhesive bioelectrodes address these shortcomings with voltage cured carbene‐based bioadhesives, locally energized through graphene interdigitated electrodes. Electrorheometry and adhesion structure activity relationships are explored with respect to voltage and electrolyte on bioelectrodes synthesized from graphene 3D‐printed onto resorbable polyester substrates. Adhesive leachates effects on in vitro metabolism and human‐derived platelet‐rich plasma response serves to qualitatively assess biological response. The voltage activated bioadhesives are found to have gelation times of 60 s or less…
Characterization of Cell Damage and Proliferative Ability during and after Bioprinting
When a biomaterial solution containing living cells is subject to bioprinting, the cells experience process-induced stresses, including shear and extensional stresses. These process-induced stresses breach cell membranes and can lead to cell damage, thus reducing cell viability and functioning within the printed constructs. Studies have been conducted to determine the influence of shear stress on cell damage; however, the effect of extensional stress has been typically ignored in the literature until the recently collected evidence of its importance. This paper presents a novel method to characterize and quantify the cell damage caused by both shear and extensional stresses in bioprinting.…
Modeling of the Mechanical Behavior of 3D Bioplotted Scaffolds Considering the Penetration in Interlocked Strands
Three-dimensional (3D) bioplotting has been widely used to print hydrogel scaffolds for tissue engineering applications. One issue involved in 3D bioplotting is to achieve the scaffold structure with the desired mechanical properties. To overcome this issue, various numerical methods have been developed to predict the mechanical properties of scaffolds, but limited by the imperfect representation of one key feature of scaffolds fabricated by 3D bioplotting, i.e., the penetration or fusion of strands in one layer into the previous layer. This paper presents our study on the development of a novel numerical model to predict the elastic modulus (one important index…
Printed, Flexible pH Sensor Hydrogels for Wet Environments
Current sensors for monitoring environmental signals, such as pH, are often made from rigid materials that are incompatible with soft biological tissues. The high stiffness of such materials sets practical limitations on the in situ utilization of sensors under biological conditions. This article describes a soft yet robust hydrogel‐based pH sensor that can be 3D printed. The pH‐sensitive poly(3,4‐ethylenedioxythiophene) is combined with hydrophilic polyurethane to create novel printable inks with favorable biomechanical properties. These inks are employed to fabricate highly flexible pH sensors that linearly respond to pH in wet environments. The pH sensitive hydrogels can undergo extreme deformations including…
3D printed biofunctionalized scaffolds for microfracture repair of cartilage defects
While articular cartilage defects affect millions of people worldwide from adolescents to adults, the repair of articular cartilage defects still remains challenging due to the limited endogenous regeneration of the tissue and poor integration with implants. In this study, we developed a 3D-printed scaffold functionalized with aggrecan that supports the cellular fraction of bone marrow released from microfracture, a widely used clinical procedure, and demonstrated tremendous improvement of regenerated cartilage tissue quality and joint function in a lapine model. Optical coherence tomography (OCT) revealed doubled thickness of the regenerated cartilage tissue in the group treated with our aggrecan functionalized scaffold…
Determination of geometrical and viscoelastic properties of PLA/PHB samples made by additive manufacturing for urethral substitution
Additive manufacturing has a great potential for creating hard tissue substitutes, such as bone and cartilage, or soft tissues, such as vascular and skin grafts. This study is a pilot study for 3D printing of a new material mixture potentially used as a tubular substitute for urethra replacement. This new mixture is a blend of polylactic acid (PLA) and polyhydroxybutyrate (PHB). The basic aspect that affects the 3D printing process is correct material preparation and setting of 3D printer parameters. Selection of material and printing parameters depend on printing technology. The printing technology affects material behavior during printing process. The…
Collagen/hydroxyapatite bone grafts manufactured by homogeneous/ heterogeneous 3D printing
This paper presents a new way to obtain collagen/hydroxyapatite (COLL/HA) composite materials by 3D printing. Because of high tendency of segregation of COLL/HA composite materials, printing was done using COLL/Ca2+ gel (even COLL/Ca(OH)2) followed by precipitation of HA and crosslinking of COLL. The HA precipitation occurs simultaneously with crosslinking of COLL molecules, these processes being assured by the presence of glutaraldehyde supplemented PBS solution. By printing with COLL/Ca2+ at acidic pH homogeneity was increased. FTIR spectroscopy and microscopy reveal HA formation as the main inorganic phase these nanoparticles being homogeneously dispersed in the volume. In vitro biocompatibility assays were performed…
Heparin/Poly-L-lysine-coated 3D-printed PLGA scaffolds as drug carriers for local immune modulation in bone regeneration
Immune responses after injury play a critical role in bone regeneration. Initiation of inflammation at early stages of repair triggers tissue formation and remodeling; however, uncontrolled inflammation underlies a catabolic effect on tissues as commonly seen in arthritis where inflammation breaks down tissues and hinders regeneration. Our ultimate goal is to design a novel approach on bone scaffolds for which biodegradable scaffolds are loaded with inflammatory cytokines for local immunomodulation as well as bone regeneration. We employed nanoparticles (NPs) composed of heparin (Hep) and poly-L-lysine (PLL) as cytokine drug carriers adhered on 3D-printed poly(lactic-co-glycolic acid) (PLGA) scaffolds. The entire drug…
Polyelectrolyte Soft Actuators: 3D Printed Chitosan and Cast Gelatin
With increasing utilization of robots in daily tasks, especially in biomedical and environmental monitoring applications, there would be demands for soft, biodegradable, or even edible actuators that provide more versatility than conventional rigid materials (e.g., metals and plastics). Polyelectrolyte hydrogels produce mechanical motion in response to electrical stimulus, making them good candidates for implementation of soft actuators. However, their conventional fabrication process has so far hindered their applicability in a broad range of controlled folding behaviors. A novel application of 3D printing in biodegradable and biocompatible soft robots is presented in this study. It is observed that the contactless electroactive…
3D Printing Nanoscale Bioactive Glass Scaffolds Enhance Osteoblast Migration and Extramembranous Osteogenesis through Stimulating Immunomodulation
Bioactive glass (BG) can repair bone defects, however, it is not clear whether BG has the ability for bone augmentation without making any bone defect. Unlike the intramembranous osteogenesis in bone defect repair, the extramembranous osteogenesis occurs outside the cortical bone and the osteoprogenitor cells show the reversed migration. Herein, nanoscale bioactive glass scaffolds (BGSs) are fabricated, and their role and immunomodulation‐related mechanism in the extramembranous osteogenesis are investigated. The in vitro migration and differentiation of calvaria preosteoblasts are studied by culturing with peripheral macrophage‐conditioned medium after stimulating with BGSs. The results indicate that the proinflammatory environment significantly promotes preosteoblast…
3D Printing of Silk Particle-Reinforced Chitosan Hydrogel Structures and Their Properties
Hydrogel bioprinting is a major area of focus in the field of tissue engineering. However, 3D printed hydrogel scaffolds often suffer from low printing accuracy and poor mechanical properties because of their soft nature and tendency to shrink. This makes it challenging to process them into structural materials. In this study, natural chitosan hydrogel scaffolds were, for the first time, reinforced with milled silk particles and fabricated by 3D printing. Compared with pure chitosan scaffolds, the addition of silk particles resulted in up to a 5-fold increase in compressive modulus as well as significantly better printing accuracy and improved scaffold…
Flow-induced motions of flexible filaments hanging in cross-flow
Experiments were carried out to study the dynamics of hanging cantilever flexible filaments in air cross-flow. Thirteen flexible filaments of 0.61 mm diameter and lengths from 20 mm to 60 mm were tested with wind speeds in the range of 1–15 m/s, corresponding to Reynolds numbers of 25
Zein regulating apatite mineralization, degradability, in vitro cells responses and in vivo osteogenesis of 3D-printed scaffold of n-MS/ZN/PCL ternary composite
Bioactive and degradable scaffolds of nano magnesium silicate (n-MS)/zein (ZN)/poly(caprolactone) (PCL) ternary composites were prepared by 3D-printing method. The results showed that the 3D-printed scaffolds possessed controllable pore structure, and pore morphology, pore size, porosity and pore interconnectivity of the scaffolds can be efficiently adjusted. In addition, the apatite-mineralization ability of the scaffolds in simulated body fluids was obviously improved with the increase of ZN content, in which the scaffold with 20 w% ZN (C20) possessed excellent apatite-mineralization ability. Moreover, the degradability of the scaffolds was significantly enhanced with the increase of ZN content in the scaffolds. The degradation of…
Mechanically robust cryogels with injectability and bioprinting supportability for adipose tissue engineering
Bioengineered adipose tissues have gained increased interest as a promising alternative to autologous tissue flaps and synthetic adipose fillers for soft tissue augmentation and defect reconstruction in clinic. Although many scaffolding materials and biofabrication methods have been investigated for adipose tissue engineering in the last decades, there are still challenges to recapitulate the appropriate adipose tissue microenvironment, maintain volume stability, and induce vascularization to achieve long-term function and integration. In the present research, we fabricated cryogels consisting of methacrylated gelatin, methacrylated hyaluronic acid, and 4arm poly(ethylene glycol) acrylate (PEG-4A) by using cryopolymerization. The cryogels were repeatedly injectable and stretchable, and…
Response of hPDLSCs on 3D printed PCL/PLGA composite scaffolds in vitro
Three‑dimensional printed (3DP) scaffolds have become an excellent resource in alveolar bone regeneration. However, selecting suitable printable materials remains a challenge. In the present study, 3DP scaffolds were fabricated using three different ratios of poly (ε‑caprolactone) (PCL) and poly‑lactic‑co‑glycolic acid (PLGA), which were 0.1PCL/0.9PLGA, 0.5PCL/0.5PLGA and 0.9PCL/0.1PLGA. The surface characteristics and degradative properties of the scaffolds, and the response of human periodontal ligament stem cells (hPDLSCs) on the scaffolds, were assessed to examine the preferable ratio of PCL and PLGA for alveolar bone regeneration. The results demonstrated that the increased proportion of PLGA markedly accelerated the degradation, smoothed the surface…
3D printed mesoporous bioactive glass/metal-organic framework scaffolds with antitubercular drug delivery
Three-dimensional (3D) porous scaffolds with sustained drug delivery are pursued for osteoarticular tuberculosis therapy after surgery. In this study, mesoporous bioactive glass/metal-organic framework (MBG/MOF) scaffolds with sustained antitubercular drug release have been fabricated by 3D printing. The results showed that the MBG/MOF scaffolds possess macropores of ca. 400 μm and enhanced compressive strength of 3–7 MPa, also exhibited good biocompatibility and apatite forming ability in vitro. Furthermore, the drug release rate and pH microenvironment of the MBG/MOF scaffolds could be controlled due to the MOF degradation. These results indicated that the 3D printed MBG/MOF scaffolds are promising for treating osteoarticular tuberculosis.
3D bioprinting of scaffolds with living Schwann cells for potential nerve tissue engineering applications
Three-dimensional bioprinting of biomaterials shows great potential for producing cell-encapsulated scaffolds to repair nerves after injury or disease. For this, preparation of biomaterials and bioprinting itself are critical to create scaffolds with both biological and mechanical properties appropriate for nerve regeneration, yet remain unachievable. This paper presents our study on bioprinting Schwann cell-encapsulated scaffolds using composite hydrogels of alginate, fibrin, hyaluronic acid, and/or RGD peptide, for nerve tissue engineering applications. For the preparation of composite hydrogels, suitable hydrogel combinations were identified and prepared by adjusting the concentration of fibrin based on the morphological spreading of Schwann cells. In bioprinting, the…
Surface nanogrooving of carbon microtubes
Extrusion processing of carbon tubes can be problematic due to their poor interfacial interactions with polymeric matrices. Surface chemical modification of carbon tubes can be utilized to create bonding sites to form networks with polymer chains. However, chemical reactions resulting in intermolecular primary bonding limit processability of extrudate, since they cause unstable rheological behaviour, and thus decrease the stock holding time, which is determinative in extrusion. This study presents a method for the synthesis of carbon microtubes with physically modified surface area to improve the filler and matrix interfacial interactions. The key concept is the formation of a nanogrooved topography,…
Label free process monitoring of 3D bioprinted engineered constructs via dielectric impedance spectroscopy
Biofabrication processes can affect biological quality attributes of encapsulated cells within constructs. Currently, assessment of the fabricated constructs is performed offline by subjecting the constructs to destructive assays that require staining and sectioning. This drawback limits the translation of biofabrication processes to industrial practice. In this work, we investigate the dielectric response of viable cells encapsulated in bioprinted 3D hydrogel constructs to an applied alternating electric field as a label-free non-destructive monitoring approach. The relationship between β-dispersion parameters (permittivity change—Δε, Cole–Cole slope factor—α, critical polarization frequency—f c ) over the frequency spectrum and critical cellular quality attributes are investigated. Results…
3D fiber deposited polymeric scaffolds for external auditory canal wall
The external auditory canal (EAC) is an osseocartilaginous structure extending from the auricle to the eardrum, which can be affected by congenital, inflammatory, and neoplastic diseases, thus reconstructive materials are needed. Current biomaterial-based approaches for the surgical reconstruction of EAC posterior wall still suffer from resorption (biological) and extrusion (synthetic). In this study, 3D fiber deposited scaffolds based on poly(ethylene oxide terephthalate)/poly(butylene terephthalate) were designed and fabricated to replace the EAC wall. Fiber diameter and scaffold porosity were optimized, leading to 200 ± 33 µm and 55% ± 5%, respectively. The mechanical properties were evaluated, resulting in a Young’s modulus of 25.1 ± 7.0 MPa. Finally, the EAC…
Comparison of the degradation behavior of PLGA scaffolds in micro-channel, shaking, and static conditions
Degradation of scaffolds is an important problem in tissue regeneration management. This paper reports a comparative study on degradation of the printed 3D poly (lactic-co-glycolic acid) scaffold under three conditions, namely, micro-channel, incubator static, and incubator shaking in the phosphate buffer saline (PBS) solution. In the case of the micro-channel condition, the solution was circulated. The following attributes of the scaffold and the solution were measured, including the mass or weight loss, water uptake, morphological and structural changes, and porosity change of the scaffold and the pH value of the PBS solution. In addition, shear stress in the scaffold under…
Vascularization of Natural and Synthetic Bone Scaffolds
Vascularization of engineered bone tissue is critical for ensuring its survival after implantation. In vitro pre-vascularization of bone grafts with endothelial cells is a promising strategy to improve implant survival. In this study, we pre-cultured human smooth muscle cells (hSMCs) on bone scaffolds for 3 weeks followed by seeding of human umbilical vein endothelial cells (HUVECs), which produced a desirable environment for microvasculature formation. The sequential cell-seeding protocol was successfully applied to both natural (decellularized native bone, or DB) and synthetic (3D-printed Hyperelastic “Bone” scaffolds, or HB) scaffolds, demonstrating a comprehensive platform for developing natural and synthetic-based in vitro vascularized…
Dynamics of Cellulose Nanocrystal Alignment during 3D Printing
The alignment of anisotropic particles during ink deposition directly affects the microstructure and properties of materials manufactured by extrusion-based 3D printing. Although particle alignment in diluted suspensions is well described by analytical and numerical models, the dynamics of particle orientation in the highly concentrated inks typically used for printing via direct ink writing (DIW) remains poorly understood. Using cellulose nanocrystals (CNCs) as model building blocks of increasing technological relevance, we study the dynamics of particle alignment under the shear stresses applied to concentrated inks during DIW. With the help of in situ polarization rheology, we find that the time period…
Engineering Human Neural Tissue by 3D Bioprinting
Bioprinting provides an opportunity to produce three-dimensional (3D) tissues for biomedical research and translational drug discovery, toxicology, and tissue replacement. Here we describe a method for fabricating human neural tissue by 3D printing human neural stem cells with a bioink, and subsequent gelation of the bioink for cell encapsulation, support, and differentiation to functional neurons and supporting neuroglia. The bioink uniquely comprises the polysaccharides alginate, water-soluble carboxymethyl-chitosan, and agarose. Importantly, the method could be adapted to fabricate neural and nonneural tissues from other cell types, with the potential to be applied for both research and clinical product development.
Three-dimensional printing of β-tricalcium phosphate/calcium silicate composite scaffolds for bone tissue engineering
Bioactive scaffolds with interconnected porous structures are essential for guiding cell growth and new bone formation. In this work, we successfully fabricated three-dimensional (3D) porous β-tricalcium phosphate (β-TCP)/calcium silicate (CS) composite scaffolds with different ratios by 3D printing technique and further investigated the physiochemical properties, in vitro apatite mineralization properties and degradability of porous β-TCP/CS scaffolds. Moreover, a series of in vitro cell experiments including the attachment, proliferation and osteogenic differentiation of mouse bone marrow stromal cells were conducted to testify their biological performances. The results showed that 3D printed β-TCP/CS scaffolds possessed of controllable internal porous structures and external…
3D Printing of Thermoresponsive Polyisocyanide (PIC) Hydrogels as Bioink and Fugitive Material for Tissue Engineering
Despite the rapid and great developments in the field of 3D hydrogel printing, a major ongoing challenge is represented by the development of new processable materials that can be effectively used for bioink formulation. In this work, we present an approach to 3D deposit, a new class of fully-synthetic, biocompatible PolyIsoCyanide (PIC) hydrogels that exhibit a reverse gelation temperature close to physiological conditions (37 °C). Being fully-synthetic, PIC hydrogels are particularly attractive for tissue engineering, as their properties—such as hydrogel stiffness, polymer solubility, and gelation kinetics—can be precisely tailored according to process requirements. Here, for the first time, we demonstrate…
Microstructure and Processing of 3D Printed Tungsten Microlattices and Infiltrated W–Cu Composites
ungsten is of industrial relevance due its outstanding intrinsic properties (e.g., highest melting‐point of all elements) and therefore difficult to 3D‐print by conventional methods. Here, tungsten micro‐lattices are produced by room‐temperature extrusion‐based 3D‐printing of an ink comprising WO3–0.5%NiO submicron powders, followed by H2‐reduction and Ni‐activated sintering. The green bodies underwent isotropic linear shrinkage of ≈50% during the thermal treatment resulting in micro‐lattices, with overall 35–60% open‐porosity, consisting of 95–100% dense W–0.5%Ni struts having ≈80–300 μm diameter. Ball‐milling the powders and inks reduced the sintering temperature needed to achieve full densification from 1400 to 1200 °C and enabled the ink to be extruded…
Tuning the viscoelastic features required for 3D printing of PVC-acrylate copolymers obtained by single electron transfer-degenerative chain transfer living radical polymerization (SET-DTLRP)
Random poly (vinyl chloride-co-butyl acrylate) and poly (vinyl chloride-co-2-ethylhexyl acrylate copolymers obtained by single electron transfer-degenerative chain transfer living radical polymerization (SET- DTLRP) are investigated as potential candidates for 3D Printing. The analysis of the rheological implications of 3D Printing process allows establishing the basic viscoelastic conditions that the samples should fulfil to be printable, avoiding the ‘trial and error’ procedure. The effect of temperature and acrylates concentration on the rheological properties and 3D printing feasibility is contemplated. Eventually, thermal degradation is also considered. It is demonstrated that the copolymers which contain butyl acrylate comonomer, instead of 2-ethylhexyl acrylate, give…
3D Printed, PVA–PAA Hydrogel Loaded-Polycaprolactone Scaffold for the Delivery of Hydrophilic In-Situ Formed Sodium Indomethacin
3D printed polycaprolactone (PCL)-blended scaffolds have been designed, prepared, and evaluated in vitro in this study prior to the incorporation of a polyvinyl alcohol–polyacrylic acid (PVA–PAA) hydrogel for the delivery of in situ-formed sodium indomethacin. The prepared PCL–PVA–PAA scaffold is proposed as a potential structural support system for load-bearing tissue damage where inflammation is prevalent. Uniaxial strain testing of the PCL-blended scaffolds were undertaken to determine the scaffold’s resistance to strain in addition to its thermal, structural, and porosimetric properties. The viscoelastic properties of the incorporated PVA–PAA hydrogel has also been determined, as well as the drug release profile of…
Stable gelatin-based phantom materials with tunable x-ray attenuation properties and 3D printability for x-ray imaging
We report a novel method for developing gelatin-based phantom materials for transmission x-ray imaging with high stability at room temperature and tunable x-ray attenuation properties. This is achieved by efficiently cross-linking gelatin in a glycerin solution with only 10% water by volume and systematically decreasing their x-ray attenuation coefficients by doping with microbubbles that are originally designed to be used as lightweight additives for paints and crack fillers. For demonstration, we mimic breast glandular and adipose tissues by using such gelatin materials and also study the feasibility of 3D printing them based on the extrusion-based technique. Results from x-ray spectroscopy…
Iterative feedback bio-printingderived cell-laden hydrogel scaffolds with optimal geometrical fidelity and cellular controllability
For three-dimensional bio-printed cell-laden hydrogel tissue constructs, the well-designed internal porous geometry is tailored to obtain the desired structural and cellular properties. However, significant differences often exist between the designed and as-printed scaffolds because of the inherent characteristics of hydrogels and cells. In this study, an iterative feedback bio-printing (IFBP) approach based on optical coherence tomography (OCT) for the fabrication of cell-laden hydrogel scaffolds with optimal geometrical fidelity and cellular controllability was proposed. A custom-made swept-source OCT (SS-OCT) system was applied to characterize the printed scaffolds quantitatively. Based on the obtained empirical linear formula from the first experimental feedback loop,…
3D-printed thick structured gelatin membrane for engineering of heterogeneous tissues
Although biological membranes may look like a 2D assembly, they often have complex structures in their 3rd dimension. Using layer-by-layer assembly, 3D-printing can offer an advanced and unique approach for the fabrication of such models. However, printing of some widely used hydrogels, such as gelatin, encounters experimental difficulties due to their rheological properties. In this paper, we (a) discuss the complexities involved in printing gelatin, (b) offer a reproducible approach to overcome such difficulties, and (c) present the detailed design criteria and the production process of such 3D-printed gelatin membranes by exemplifying scaffolds suitable for growth of full-thickness oral mucosa…
A 3D bioprinted in situ conjugated‐co‐fabricated scaffold for potential bone tissue engineering applications
There is a demand for progressive approaches in bone tissue engineering to repair and regenerate bone defects resulting from trauma or disease. This investigation sought to engineer a single‐step in situ conjugated polymeric scaffold employing 3D printing technology as an innovative fabricating tool. A polymeric scaffold was engineered in situ employing sodium alginate as a bio‐ink which interacted with a poly(ethyleneimine) solution on bioprinting to form a polyelectrolyte complex through ionic bond formation. Silica gel was included in the bio‐ink as temporal inorganic support component and for ultimate enhancement of osteoinduction. Characterization of the biorelevant properties of the scaffold was…
3D-printed IFN-γ-loading calcium silicate-β-tricalcium phosphate scaffold sequentially activates M1 and M2 polarization of macrophages to promote vascularization of tissue engineering bone
To promote vascularization of tissue-engineered bone, IFN-γ polarizing macrophages to M1 was loaded on 5% calcium silicate/β-tricalcium phosphate (CaSiO3-β-TCP) scaffolds. IFN-γ and Si released from the scaffold were designed to polarize M1 and M2 macrophages, respectively. β-TCP, CaSiO3-β-TCP, and IFN-γ@CaSiO3-β-TCP were fabricated and biocompatibilities were evaluated. Polarizations of macrophages were detected by flow cytometry. Human umbilical vein endothelial cells with GFP were cultured and induced on Matrigel with conditioned culture medium extracted from culture of macrophages loaded on scaffolds for evaluating angiogenesis. Four weeks after the scaffolds were subcutaneously implanted into C57B1/6, vascularization was evaluated by visual observation, hematoxylin and…
3D-printed gelatin scaffolds of differing pore geometry modulate hepatocyte function and gene expression
Three dimensional (3D) printing is highly amenable to the fabrication of tissue-engineered organs of a repetitive microstructure such as the liver. The creation of uniform and geometrically repetitive tissue scaffolds can also allow for the control over cellular aggregation and nutrient diffusion. However, the effect of differing geometries, while controlling for pore size, has yet to be investigated in the context of hepatocyte function. In this study, we show the ability to precisely control pore geometry of 3D-printed gelatin scaffolds. An undifferentiated hepatocyte cell line (HUH7) demonstrated high viability and proliferation when seeded on 3D-printed scaffolds of two different geometries.…
Effects of tunable, 3D-bioprinted hydrogels on human brown adipocyte behavior and metabolic function
Obesity and its related health complications cause billions of dollars in healthcare costs annually in the United States, and there are yet to be safe and long-lasting anti-obesity approaches. Using brown adipose tissue (BAT) is a promising approach, as it uses fats for energy expenditure. However, the effect of the microenvironment on human thermogenic brown adipogenesis and how to generate clinically relevant sized and functioning BAT are still unknown. In our current study, we evaluated the effects of endothelial growth medium exposure on brown adipogenesis of human brown adipose progenitors (BAP). We found that pre-exposing BAP to angiogenic factors promoted…
A novel surgical technique for a rat subcutaneous implantation of a tissue engineered scaffold
Objectives Subcutaneous implantations in small animal models are currently required for preclinical studies of acellular tissue to evaluate biocompatibility, including host recellularization and immunogenic reactivity. Methods Three rat subcutaneous implantation methods were evaluated in six Sprague Dawley rats. An acellular xenograft made from porcine pericardium was used as the tissue-scaffold. Three implantation methods were performed; 1) Suture method is where a tissue-scaffold was implanted by suturing its border to the external oblique muscle, 2) Control method is where a tissue-scaffold was implanted without any suturing or support, 3) Frame method is where a tissue-scaffold was attached to a circular frame…
3D-printing porosity: A new approach to creating elevated porosity materials and structures
We introduce a new process that enables the ability to 3D-print high porosity materials and structures by combining the newly introduced 3D-Painting process with traditional salt-leaching. The synthesis and resulting properties of three 3D-printable inks comprised of varying volume ratios (25:75, 50:50, 70:30) of CuSO4 salt and polylactide-co-glycolide (PLGA), as well as their as-printed and salt-leached counterparts, are discussed. The resulting materials are comprised entirely of PLGA (F-PLGA), but exhibit porosities proportional to the original CuSO4 content. The three distinct F-PLGA materials exhibit average porosities of 66.6–94.4%, elastic moduli of 112.6-2.7 MPa, and absorbency of 195.7–742.2%. Studies with adult human mesenchymal…
Mechanical characterization and numerical simulation of a subcutaneous implantable 3D printed cell encapsulation system
Cell transplantation in bioengineered scaffolds and encapsulation systems has shown great promise in regenerative medicine. Depending on the site of implantation, type of cells and their expected function, these systems are designed to provide cells with a physiological-like environment while providing mechanical support and promoting long-term viability and function of the graft. A minimally invasive 3D printed system termed neovascularized implantable cell homing and encapsulation (NICHE) was developed in polylactic acid for subcutaneous transplantation of endocrine cells, including pancreatic islets. The suitability of the NICHE for long term in vivo deployment is investigated by assessing mechanical behavior of both fresh…
Influence of crosslinking on the mechanical behavior of 3D printed alginate scaffolds: Experimental and numerical approaches
Tissue scaffolds fabricated by three-dimensional (3D) bioprinting are attracting considerable attention for tissue engineering applications. Because the mechanical properties of hydrogel scaffolds should match the damaged tissue, changing various parameters during 3D bioprinting has been studied to manipulate the mechanical behavior of the resulting scaffolds. Crosslinking scaffolds using a cation solution (such as CaCl2) is also important for regulating the mechanical properties, but has not been well documented in the literature. Here, the effect of varied crosslinking agent volume and crosslinking time on the mechanical behavior of 3D bioplotted alginate scaffolds was evaluated using both experimental and numerical methods. Compression…
Use of 3D Printing to Prototype a Custom Shape Memory Alloy Penile Prosthesis
Three-dimensional (3D) printing or additive printing is a new technology that allows for construction of complex shapes and designs outside the constraints of traditional manufacturing techniques. Traditional 3D printing was limited to thermosensitive plastics that have limited medical applications. Herein, we describe the application of a cutting edge process that allows for 3D printing of shape memory alloys (SMA) using inks of shape memory alloy powder. Using our previously described concept of a SMA penile prosthesis for the treatment of erectile dysfunction, we sought to construct an intracavernosal cylinder using 3D printing technology.
Printing Biological Liquid On Hydrophobic 3D Electrodes
This paper presents for the first time a programmable and scalable 3D electro-bioprinting (3D-EBP) process for patterning bionanoreceptors, cysteine-modified Tobacco mosaic virus (TMV1cys), on high-density micropillar array electrodes. The structural hydrophobicity in high aspect ratio geometries of micro/nano devices poses a critical challenge for assembling 3D biomaterial-device interfaces. Here, we have successfully integrated electrowetting principles with a modified state-of-the-art bioprinter for automated, high-throughput, and large-scale patterning of TMV1cys particles on hydrophobic 3D electrodes. The 3D-EBP processed bionanoreceptors maintained both structural and chemical functions as characterized via SEM and fluorescence microscopy. Overall, the innovative 3D biomanufacturing process creates excellent opportunities for…
Optimisation of mixture properties for 3D printing of geopolymer concrete
Freedom of design, customisation, automation, waste minimisation, reduced labour and building complex structures with cheaper materials are the main initiatives for developing 3D printed structures. The fresh properties of concrete are the most important aspects of a successful 3D printing. Concrete requires high workability for extrusion, optimum open time and high early strength in order to support the subsequent layers for 3D printing. Therefore, a mixture design that can satisfy these requirements is needed. Geopolymer concrete is a sustainable solution to traditional Portland cement-based concrete that uses waste materials. In addition, the controlled alkali-activation of geopolymer precursors in order to…
3D Bioprinting of Breast Cancer Models for Drug Resistance Study
Adipose-derived mesenchymal stem/stromal cells (ADMSC) are one of the major stromal cells in the breast cancer microenvironment that promote cancer progression. Previous studies on the effects of ADMSC on breast cancer metastasis and drug resistance, using two-dimensional (2D) cultures, remained inconclusive. In the present study, we compared cocultured ADMSC and human epidermal receptor 2 positive breast primary breast cancer cells (21PT) in 2D and three-dimensional (3D) cultures and then examined their response to doxorubicin (DOX). We examined 3D bioprinted constructs with breast cancer cells in the middle and ADMSC in the edge region, which were made by using dual hydrogel-based…
Rheological, In Situ Printability and Cell Viability Analysis of Hydrogels for Muscle Tissue Regeneration
Advancements in additive manufacturing have made it possible to fabricate biologically relevant architectures from a wide variety of materials. Hydrogels have garnered increased attention for the fabrication of muscle tissue engineering constructs due to their resemblance to living tissue and ability to function as cell carriers. However, there is a lack of systematic approaches to screen bioinks based on their inherent properties, such as rheology, printability and cell viability. Furthermore, this study takes the critical first-step for connecting in-process sensor data with construct quality by studying the influence of printing parameters. Alginate-chitosan hydrogels were synthesized and subjected to a systematic…
Determination Of The Geometrical And Viscoelastic Properties Of Scaffolds Made By Additive Manufacturing Using Bioplotter
Additive Manufacturing (AM) is a name of a group of technologies that build 3D objects by adding layer-upon-layer of material. There are many technologies, including Rapid Prototyping (RP), Direct Digital Manufacturing (DDM), layered manufacturing and additive fabrication. Many types of materials can be used for AM technology. Biodegradable polymers such as polylactic acid (PLA) and polyhydroxybutyrate (PHB), are currently the subject of intensive research in the field of additive manufacturing and regenerative medicine. A number of biodegradable and bioresorbable materials, as well as scaffold designs, have been experimentally and clinically studied in many research facilities around the world. For effective…
Fast Setting Silk Fibroin Bioink for Bioprinting of Patient-Specific Memory-Shape Implants
The pursuit for the “perfect” biomimetic and personalized implant for musculoskeletal tissue regeneration remains a big challenge. 3D printing technology that makes use of a novel and promising biomaterials can be part of the solution. In this study, a fast setting enzymatic-crosslinked silk fibroin (SF) bioink for 3D bioprinting is developed. Their properties are fine-tuned and different structures with good resolution, reproducibility, and reliability can be fabricated. Many potential applications exist for the SF bioinks including 3D bioprinted scaffolds and patient-specific implants exhibiting unique characteristics such as good mechanical properties, memory-shape feature, suitable degradation, and tunable pore architecture and morphology.
Sintering of micro-trusses created by extrusion-3D-printing of lunar regolith inks
The development of in situ fabrication methods for the infrastructure required to support human life on the Moon is necessary due to the prohibitive cost of transporting large quantities of materials from the Earth. Cellular structures, consisting of a regular network (truss) of micro-struts with ∼500 μm diameters, suitable for bricks, blocks, panels, and other load-bearing structural elements for habitats and other infrastructure are created by direct-extrusion 3D-printing of liquid inks containing JSC-1A lunar regolith simulant powders, followed by sintering. The effects of sintering time, temperature, and atmosphere (air or hydrogen) on the microstructures, mechanical properties, and magnetic properties of…
Determination of the normal fluid load on inclined cylinders from optical measurements of the reconfiguration of flexible filaments in flow
Reconfigured flexible filaments exposed to steady fluid load were investigated using a novel non-contact optical technique to measure the normal fluid force due to the fluid loading on inclined cylinders for Reynolds numbers from 25 to 460: a range not covered in previous studies that is of relevance in drag reduction and energy harvesting applications. The ranges of the buoyancy number and the Cauchy number covered in the tests were 3.6 × 10^4 ≤ B ≤ 2.1 × 10^6 and 7.6 × 10^4 ≤ Ca ≤ 1.4 × 10^7. These newly generated data were then used to assess and extend…
Evaluation of PBS Treatment and PEI Coating Effects on Surface Morphology and Cellular Response of 3D-Printed Alginate Scaffolds
Three-dimensional (3D) printing is an emerging technology for the fabrication of scaffolds to repair/replace damaged tissue/organs in tissue engineering. This paper presents our study on 3D printed alginate scaffolds treated with phosphate buffered saline (PBS) and polyethyleneimine (PEI) coating and their impacts on the surface morphology and cellular response of the printed scaffolds. In our study, sterile alginate was prepared by means of the freeze-drying method and then, used to prepare the hydrogel for 3D printing into calcium chloride, forming 3D scaffolds. Scaffolds were treated with PBS for a time period of two days and seven days, respectively, and PEI…
Ni-Mn-Ga Micro-trusses via Sintering of 3D-printed Inks Containing Elemental Powders
Ni-Mn-Ga magnetic shape memory alloy (SMA) micro-trusses, suitable for high magnetic field induced strains and/or a large magnetocaloric effect, are created via a new additive manufacturing method combining (i) 3D-printing ∼400 μm struts with an ink containing a polymer binder and elemental Ni, Mn, and Ga powders, (ii) binder burn-out and metallic powder interdiffusion and homogenization to create the final alloy, and (iii) further sintering to increase strut density. Controlled amounts of hierarchical porosity, desirable to enable twinning in this polycrystalline alloy, are achieved: (i) continuous ∼450 μm channels between the printed Ni-Mn-Ga ∼300 μm diameter struts (after sintering) and…
3D printing of hybrid biomaterials for bone tissue engineering: Calcium-polyphosphate microparticles encapsulated by polycaprolactone
Here we describe the formulation of a morphogenetically active bio-ink consisting of amorphous microparticles (MP) prepared from Ca2+ and the physiological inorganic polymer, polyphosphate (polyP). Those MP had been fortified by mixing with poly-ε-caprolactone (PCL) to allow 3D-bioprinting. The resulting granular PCL/Ca-polyP-MP hybrid material, liquefied by short-time heating to 100 °C, was used for the 3D-printing of tissue-like scaffolds formed by strands with a thickness of 400 µm and a stacked architecture leaving ≈0.5 mm2-sized open holes enabling cell migration. The printed composite scaffold turned out to combine suitable biomechanical properties (Young’s modulus of 1.60 ± 0.1 GPa; Martens hardness of 153 ± 28 MPa), matching those of cortical…
Elastic polyurethane bearing pendant TGF-β1 affinity peptide for potential tissue engineering applications
Highlights * An elastic degradable polyurethane (PU) bearing pendent HSNGLPL peptide for TGF-β1 affinity binding mimics the extracellular matrix function to retain and release growth factors. * The pendant peptide sequence presented a high affinity for TGF-β1 retaining, even when the surface was pre-coated with other proteins. * The synthesized PU shows good extrusion processing ability and can be printed into 3D scaffolds with designed porous structures. * The released TGF-β1 from surface conjugating was tested by differentiation guiding experiments of ATDC5 cells in vitro and the regeneration of the surrounding tissue after implanting in vivo.
Imaging stem cell distribution, growth, migration, and differentiation in 3-D scaffolds for bone tissue engineering using mesoscopic fluorescence tomography
Regenerative medicine has emerged as an important discipline that aims to repair injury or replace damaged tissues or organs by introducing living cells or functioning tissues. Successful regenerative medicine strategies will likely depend upon a simultaneous optimization strategy for the design of biomaterials, cell-seeding methods, cell-biomaterial interactions and molecular signaling within the engineered tissues. It remains a challenge to image three-dimensional (3-D) structures and functions of the cell-seeded scaffold in mesoscopic scale (>2∼3 mm). In this study, we utilized angled fluorescence laminar optical tomography (aFLOT), which allows depth-resolved molecular characterization of engineered tissues in 3-D to investigate cell viability, migration and…
UV-assisted 3D bioprinting of nano-reinforced hybrid cardiac patch for myocardial tissue engineering
Biofabrication of cell supportive cardiac patches that can be directly implanted on myocardial infarct is a potential solution for myocardial infarction repair. Ideally, cardiac patches should be able to mimic myocardium extracellular matrix for rapid integration with the host tissue, raising the need to develop cardiac constructs with complex features. In particular, cardiac patches should be electrically conductive, mechanically robust and elastic, biologically active and pre-vascularized.. In this study, we aim to biofabricate a nano-reinforced hybrid cardiac patch laden with human coronary artery endothelial cells (HCAECs) with improved electrical, mechanical and biological behavior. A safe UV exposure time with insignificant…
Prevascularization of 3D printed bone scaffolds by bioactive hydrogels and cell co-culture
Vascularization is a fundamental prerequisite for large bone construct development and remains one of the main challenges of bone tissue engineering. Our current study presents the combination of 3D printing technique with a hydrogel-based prevascularization strategy to generate prevascularized bone constructs. Human adipose derived mesenchymal stem cells (ADMSC) and human umbilical vein endothelial cells (HUVEC) were encapsulated within our bioactive hydrogels, and the effects of culture conditions on in vitro vascularization were determined. We further generated composite constructs by forming 3D printed polycaprolactone/hydroxyapatite scaffolds coated with cell-laden hydrogels and determined how the co-culture affected vascularization and osteogenesis. It was demonstrated…
“Tissue Papers” from Organ-Specific Decellularized Extracellular Matrices
Using an innovative, tissue-independent approach to decellularized tissue processing and biomaterial fabrication, the development of a series of “tissue papers” derived from native porcine tissues/organs (heart, kidney, liver, muscle), native bovine tissue/organ (ovary and uterus), and purified bovine Achilles tendon collagen as a control from decellularized extracellular matrix particle ink suspensions cast into molds is described. Each tissue paper type has distinct microstructural characteristics as well as physical and mechanical properties, is capable of absorbing up to 300% of its own weight in liquid, and remains mechanically robust (E = 1–18 MPa) when hydrated; permitting it to be cut, rolled,…
Biomimetic 3D printed scaffolds for meniscus tissue engineering
The menisci distribute loads to protect the articular cartilage of the knee joint from excessive stress. Injuries to their avascular inner regions do not heal, disrupt function, and increase the risk for knee osteoarthritis. Meniscus tissue engineering aims to restore normal meniscus function by use of regenerated tissue on bioengineered scaffolds. The primary purpose of this study was to design and 3D print polycaprolactone scaffolds that recapitulate the shape and structural components of the meniscus extracellular matrix to provide a template and structural support for complete cell-based meniscus regeneration. A secondary aim was to characterize 3D printed polycaprolactone scaffold fibre…
Development and Analysis of a 3D Printed Hydrogel Soft Actuator
Polyelectrolyte hydrogels produce mechanical motion in response to electrical stimulus making them a good candidate for implementation of soft actuators. However, their customary fabrication process has thus far hindered their applicability in a broad range of controlled folding behaviours. This paper employs the 3D printing technology does the development of polyelectrolyte hydrogel soft actuators. A 3D printed soft hydrogel actuator with contactless electrodes is presented for the first time. Initially chitosan as a candidate of polyelectrolytes which possess both printability and stimuli responsive is opted for ink preparation of 3D printing. The printing parameters are optimised for fabrication of desired…
3D Bioprinting of Cellulose with Controlled Porous Structures from NMMO
In the present work, dissolved cellulose has been 3D bioprinted to produce complex structures with ordered interconnected pores. The process consists of the dissolution of dissolving pulps in N-methylmorpholine-N-oxide (NMMO), multilayered dispensing, water removal of NMMO and freeze-drying. 3D bioprinting of cellulose/NMMO solution at 70 ℃ was analogous to that of thermoplastics by the process of melting and solidification to produce cellulose/NMMO objects in the solid form. However, 3D bioprinting of cellulose/NMMO solution at a higher temperature than 70 ℃ produced cellulose/NMMO objects in the gel form. Cellulose was regenerated by water; thereafter, freeze-drying treatment maintained the 3D bioprinted structures…
Molecularly imprinted polymers immobilized on 3D printed scaffolds as novel solid phase extraction sorbent for metergoline
In the present work, a novel solid phase extraction (SPE) sorbent was developed based on molecularly imprinted polymers (MIPs) immobilized on 3D-printed scaffolds using polymer networks as MIP-immobilizing layer. MIPs were produced by precipitation polymerization in acetonitrile (ACN) using methacrylic acid (MAA) as functional monomer, trimethylolpropane trimethacrylate (TRIM) as crosslinker and metergoline as model template which allows final recognition of ergot alkaloid mycotoxins. Scanning electron microscopy (SEM) and dynamic light scattering (DLS) analyses showed an average MIP particle size of 457 ± 145 nm. Functional MIP analysis revealed dissociation constants (KD) of 0.29 and 38.90 μM for high and low…
3D printing PLGA: a quantitative examination of the effects of polymer composition and printing parameters on print resolution
In the past few decades, 3D printing has played a significant role in fabricating scaffolds with consistent, complex structure that meet patient-specific needs in future clinical applications. Although many studies have contributed to this emerging field of additive manufacturing, which includes material development and computer-aided scaffold design, current quantitative analyses do not correlate material properties, printing parameters, and printing outcomes to a great extent. A model that correlates these properties has tremendous potential to standardize 3D printing for tissue engineering and biomaterial science. In this study, we printed poly(lactic-co-glycolic acid) (PLGA) utilizing a direct melt extrusion technique without additional ingredients.…
Evaluation of 3D-Printed Polycaprolactone Scaffolds Coated with Freeze-Dried Platelet-Rich Plasma for Bone Regeneration
Three-dimensional printing is one of the most promising techniques for the manufacturing of scaffolds for bone tissue engineering. However, a pure scaffold is limited by its biological properties. Platelet-rich plasma (PRP) has been shown to have the potential to improve the osteogenic effect. In this study, we improved the biological properties of scaffolds by coating 3D-printed polycaprolactone (PCL) scaffolds with freeze-dried and traditionally prepared PRP, and we evaluated these scaffolds through in vitro and in vivo experiments. In vitro, we evaluated the interaction between dental pulp stem cells (DPSCs) and the scaffolds by measuring cell proliferation, alkaline phosphatase (ALP) activity,…
Repair of Tympanic Membrane Perforations with Customized, Bioprinted Ear Grafts Using Chinchilla Models
The goal of this work is to develop an innovative method that combines bioprinting and endoscopic imaging to repair tympanic membrane perforations (TMPs). TMPs are a serious health issue because they can lead to both conductive hearing loss and repeated otitis media. TMPs occur in 3 to 5% of cases after ear tube placement as well as in cases of acute otitis media (the second most common infection in pediatrics), chronic otitis media with or without cholesteatoma, or as a result of barotrauma to the ear. About 55,000 tympanoplasties, the surgery performed to reconstruct TMPs, are performed every year and…
2D and 3D-printing of self-healing gels: design and extrusion of self-rolling objects
In this work, we report the synthesis, characterization and three-dimensional (3D) printing of self-healing gels. The gels are prepared by cross-linking benzaldehyde-functionalized poly(2-hydroxyethyl methacrylate) (PHEMA) with ethylenediamine (EDA) to form dynamic imine bonds. An immediate gelation was observed within seconds, followed by a full maturation, enabling time independent and stable printing. The self-healing gels showed 98% recovery from mechanical damages. To establish a printable window for our well-defined system, and to allow robust printability, we examined a broad number of ink formulations. To tune the rheology towards the formation of soft and extrudable, yet stable and self-supporting materials, we examined…
Bioprinting pattern-dependent electrical/mechanical behavior of cardiac alginate implants: characterization and ex-vivo phase-contrast microtomography assessment
Three-dimensional (3D)-bioprinting techniques may be used to modulate electrical/mechanical properties and porosity of hydrogel constructs for fabrication of suitable cardiac implants. Notably, characterization of these properties after implantation remains a challenge, raising the need for the development of novel quantitative imaging techniques for monitoring hydrogel implant behavior in-situ. This study aims to (i) assess the influence of hydrogel bioprinting patterns on electrical/mechanical behavior of cardiac implants based on a 3D-printing technique and (ii) investigate the potential of synchrotron X-ray phase contrast computed tomography (PCI-CT) for estimating elastic modulus/impedance/porosity and microstructural features of 3D-printed cardiac implants in-situ via an ex-vivo study.…
Tailorable Surface Morphology of 3D Scaffolds by Combining Additive Manufacturing with Thermally Induced Phase Separation
The functionalization of biomaterials substrates used for cell culture is gearing towards an increasing control over cell activity. Although a number of biomaterials have been successfully modified by different strategies to display tailored physical and chemical surface properties, it is still challenging to step from 2D substrates to 3D scaffolds with instructive surface properties for cell culture and tissue regeneration. In this study, additive manufacturing and thermally induced phase separation are combined to create 3D scaffolds with tunable surface morphology from polymer gels. Surface features vary depending on the gel concentration, the exchanging temperature, and the nonsolvent used. When preosteoblasts…
[Gelatin/alginate hydrogel scaffolds prepared by 3D bioprinting promotes cell adhesion and proliferation of human dental pulp cells in vitro]
OBJECTIVE: To evaluate the cytotoxicity of gelatin/alginate hydrogel scaffolds prepared by 3D bioprinting in human dental pulp cells (HDPCs) and compare the cell adhesion and proliferation of the cells seeded in the biomaterial using two different methods. METHODS: HDPCs isolated by tissue block culture and enzyme digestion were cultured and passaged. Gelatin/alginate hydrogel scaffolds were printed using a bioplotter, and the cytotoxicity of the aqueous extracts of the scaffold material was tested in the third passage of HDPCs using cell counting kit-8. Scanning electron microscopy and trypan blue were used to assess the adhesion and proliferation of the cells seeded…
Short-term hypoxic preconditioning promotes prevascularization in 3D bioprinted bone constructs with stromal vascular fraction derived cells
Reconstruction of complex, craniofacial bone defects often requires autogenous vascularized bone grafts, and still remains a challenge today. In order to address this issue, we isolated the stromal vascular fraction (SVF) from adipose tissues and maintained the phenotypes and the growth of endothelial lineage cells within SVF derived cells (SVFC) by incorporating an endothelial cell medium. We 3D bioprinted SVFC within our hydrogel bioinks and conditioned the constructs in either normoxia or hypoxia. We found that short-term hypoxic conditioning promoted vascularization-related gene expression, whereas long-term hypoxia impaired cell viability and vascularization. 3D bioprinted bone constructs composed of polycaprolactone/hydroxyapatite (PCL/HAp) and…
Potential of propagation-based synchrotron X-ray phase-contrast computed tomography for cardiac tissue engineering
Hydrogel-based cardiac tissue engineering offers great promise for myocardial infarction repair. The ability to visualize engineered systems in vivo in animal models is desired to monitor the performance of cardiac constructs. However, due to the low density and weak X-ray attenuation of hydrogels, conventional radiography and micro-computed tomography are unable to visualize the hydrogel cardiac constructs upon their implantation, thus limiting their use in animal systems. This paper presents a study on the optimization of synchrotron X-ray propagation-based phase-contrast imaging computed tomography (PCI-CT) for three-dimensional (3D) visualization and assessment of the hydrogel cardiac patches. First, alginate hydrogel was 3D-printed into…
3D Bioprinting Human Induced Pluripotent Stem Cell Constructs for In Situ Cell Proliferation and Successive Multilineage Differentiation
The ability to create 3D tissues from induced pluripotent stem cells (iPSCs) is poised to revolutionize stem cell research and regenerative medicine, including individualized, patient-specific stem cell-based treatments. There are, however, few examples of tissue engineering using iPSCs. Their culture and differentiation is predominantly planar for monolayer cell support or induction of self-organizing embryoids (EBs) and organoids. Bioprinting iPSCs with advanced biomaterials promises to augment efforts to develop 3D tissues, ideally comprising direct-write printing of cells for encapsulation, proliferation, and differentiation. Here, such a method, employing a clinically amenable polysaccharide-based bioink, is described as the first example of bioprinting human…
Fabrication and Evaluation of Electrospun, 3D-Bioplotted, and Combination of Electrospun/3D-Bioplotted Scaffolds for Tissue Engineering Applications
Electrospun scaffolds provide a dense framework of nanofibers with pore sizes and fiber diameters that closely resemble the architecture of native extracellular matrix. However, it generates limited three-dimensional structures of relevant physiological thicknesses. 3D printing allows digitally controlled fabrication of three-dimensional single/multimaterial constructs with precisely ordered fiber and pore architecture in a single build. However, this approach generally lacks the ability to achieve submicron resolution features to mimic native tissue. The goal of this study was to fabricate and evaluate 3D printed, electrospun, and combination of 3D printed/electrospun scaffolds to mimic the native architecture of heterogeneous tissue. We assessed their…
Extraction and characterization of collagen from Antarctic and Sub-Antarctic squid and its potential application in hybrid scaffolds for tissue engineering
Collagen is the most abundant protein found in mammals and it exhibits a low immunogenicity, high biocompatibility and biodegradability when compared with others natural polymers. For this reason, it has been explored for the development of biologically instructive biomaterials with applications for tissue substitution and regeneration. Marine origin collagen has been pursued as an alternative to the more common bovine and porcine origins. This study focused on squid (Teuthoidea: Cephalopoda), particularly the Antarctic squid Kondakovia longimana and the Sub-Antarctic squid Illex argentinus as potential collagen sources. In this study, collagen has been isolated from the skins of the squids using…
Integrated 3D printed scaffolds and electrical stimulation for enhancing primary human cardiomyocyte cultures
3D printing technology is driving innovation in a wide variety of disciplines, and is beginning to make inroads into the fields of medicine and biology. In particular, 3D printing is being increasingly utilized for the design and fabrication of three-dimensional cell culture scaffolds. This technology allows for scaffolds to be produced rapidly while maintaining a great deal of control over the matrix architecture. This paper presents an effective technique for rapidly designing and fabricating scaffolds from silicone rubber and polycaprolactone (PCL), appropriate for primary human cardiomyocyte cell cultures. Additionally, a stimulation device is developed and presented which can provide 6…
Polycaprolactone-and polycaprolactone/ceramic-based 3D-bioplotted porous scaffolds for bone regeneration: A comparative study
One of the critical challenges that scaffolding faces in the organ and tissue regeneration field lies in mimicking the structure, and the chemical and biological properties of natural tissue. A high-level control over the architecture, mechanical properties and composition of the materials in contact with cells is essential to overcome such challenge. Therefore, definition of the method, materials and parameters for the production of scaffolds during the fabrication stage is critical. With the recent emergence of rapid prototyping (RP), it is now possible to create three-dimensional (3D) scaffolds with the essential characteristics for the proliferation and regeneration of tissues, such…
In-situ handheld 3D Bioprinting for cartilage regeneration
Articular cartilage injuries experienced at an early age can lead to the development of osteoarthritis later in life. In situ 3D printing is an exciting and innovative bio-fabrication technology that enables the surgeon to deliver tissue- engineering techniques at the time and location of need. We have created a hand- held 3D printing device (Biopen) that allows the simultaneous co-axial extrusion of bioscaffold and cultured cells directly into the cartilage defect in vivo in a single session surgery. This pilot study assesses the ability of the Biopen to repair a full thickness chondral defect and the early outcomes in cartilage…
A bioprosthetic ovary created using 3D printed microporous scaffolds restores ovarian function in sterilized mice
Emerging additive manufacturing techniques enable investigation of the effects of pore geometry on cell behavior and function. Here, we 3D print microporous hydrogel scaffolds to test how varying pore geometry, accomplished by manipulating the advancing angle between printed layers, affects the survival of ovarian follicles. 30° and 60° scaffolds provide corners that surround follicles on multiple sides while 90° scaffolds have an open porosity that limits follicle–scaffold interaction. As the amount of scaffold interaction increases, follicle spreading is limited and survival increases. Follicle-seeded scaffolds become highly vascularized and ovarian function is fully restored when implanted in surgically sterilized mice. Moreover,…
Robust and Elastic Lunar and Martian Structures from 3D-Printed Regolith Inks
Here, we present a comprehensive approach for creating robust, elastic, designer Lunar and Martian regolith simulant (LRS and MRS, respectively) architectures using ambient condition, extrusion-based 3D-printing of regolith simulant inks. The LRS and MRS powders are characterized by distinct, highly inhomogeneous morphologies and sizes, where LRS powder particles are highly irregular and jagged and MRS powder particles are rough, but primarily rounded. The inks are synthesized via simple mixing of evaporant, surfactant, and plasticizer solvents, polylactic-co-glycolic acid (30% by solids volume), and regolith simulant powders (70% by solids volume). Both LRS and MRS inks exhibit similar rheological and 3D-printing characteristics,…
Modeling flow behavior and flow rate of medium viscous alginate for scaffold fabrication with 3D bioplotter
Tissue regeneration with scaffold is one of the most promising approaches now a day, where application of dispensing-based rapid prototyping technique is drawing attention due to its capability to offer operational flexibility and print complex structure with utmost uniformity. In a pneumatic dispensing system, it is a critical issue to control the flow rate of biomaterial from dispensing tip, as some variables (material viscosity, temperature, needle geometry, and dispensing pressure) regulates the flow rate . In this context, model equations can play a vital role to control and predict the flow rate of dispensing material, and thus can eliminate the…
Effects of 3D-bioplotted polycaprolactone scaffold geometry on human adipose-derived stem cells viability and proliferation
Purpose This study investigates the effect of 3D-bioplotted polycaprolactone (PCL) scaffold geometry on the biological and mechanical characteristics of human adipose-derived stem cell (hASC) seeded constructs. Design/methodology/approach Four 3D-bioplotted scaffold disc designs (Ø14.5 x 2 mm) with two levels of strand-pore feature sizes and two strand laydown patterns (0°/90° or 0°/120°/240°) were evaluated for hASC viability, proliferation, and construct compressive stiffness after 14 days of in vitro cell culture. Findings Scaffolds with the highest porosity (smaller strand-pore size in 0°/120°/240°) yielded the highest hASC proliferation and viability. Further testing of this design in a 6 mm thick configuration showed that…
3D segmentation of intervertebral discs: from concept to the fabrication of patient-specific scaffolds
Aim: To develop a methodology for producing patient-specific scaffolds that mimic the annulus fibrosus (AF) of the human intervertebral disc by means of combining MRI and 3D bioprinting. Methods: In order to obtain the AF 3D model from patient’s volumetric MRI dataset, the RheumaSCORE segmentation software was used. Polycaprolactone scaffolds with three different internal architectures were fabricated by 3D bioprinting, and characterized by microcomputed tomography. Results: The demonstrated methodology of a geometry reconstruction pipeline enabled us to successfully obtain an accurate AF model and 3D print patient-specific scaffolds with different internal architectures. Conclusion: The results guide us toward patient-specific intervertebral…
Three dimensional printing of calcium sulfate and mesoporous bioactive glass scaffolds for improving bone regeneration in vitro and in vivo
In the clinic, bone defects resulting from infections, trauma, surgical resection and genetic malformations remain a significant challenge. In the field of bone tissue engineering, three-dimensional (3D) scaffolds are promising for the treatment of bone defects. In this study, calcium sulfate hydrate (CSH)/mesoporous bioactive glass (MBG) scaffolds were successfully fabricated using a 3D printing technique, which had a regular and uniform square macroporous structure, high porosity and excellent apatite mineralization ability. Human bone marrow-derived mesenchymal stem cells (hBMSCs) were cultured on scaffolds to evaluate hBMSC attachment, proliferation and osteogenesis-related gene expression. Critical-sized rat calvarial defects were applied to investigate the…
Reversible Programing of Soft Matter with Reconfigurable Mechanical Properties
Biology uses various cross-linking mechanisms to tailor material properties, and this is inspiring technological efforts to couple independent cross-linking mechanisms to create hydrogels with complex mechanical properties. Here, it is reported that a hydrogel formed from a single polysaccharide can be triggered to reversibly switch cross-linking mechanisms and switch between elastic and viscoelastic properties. Specifically, the pH-responsive self-assembling aminopolysaccharide chitosan is used. Under acidic conditions, chitosan is polycationic and can be electrostatically cross-linked by sodium dodecyl sulfate (SDS) micelles to confer viscoelastic and self-healing properties. Under basic conditions, chitosan becomes neutral, the electrostatic SDS–chitosan interactions are no longer operative, and…
Remote Determination of Time-Dependent Stiffness of Surface-Degrading-Polymer Scaffolds Via Synchrotron-Based Imaging
Surface-degrading polymers have been widely used to fabricate scaffolds with the mechanical properties appropriate for tissue regeneration/repair. During their surface degradation, the material properties of polymers remain approximately unchanged, but the scaffold geometry and thus mechanical properties vary with time. This paper presents a novel method to determine the time-dependent mechanical properties, particularly stiffness, of scaffolds from the geometric changes captured by synchrotron-based imaging, with the help of finite element analysis (FEA). Three-dimensional (3D) tissue scaffolds were fabricated from surface-degrading polymers, and during their degradation, the tissue scaffolds were imaged via the synchrotron-based imaging to characterize their changing geometry. On…
Effects of shear stress gradients on Ewing sarcoma cells using 3D printed scaffolds and flow perfusion
In this work, we combined three-dimensional (3D) scaffolds with flow perfusion bioreactors to evaluate the gradient effects of scaffold architecture and mechanical stimulation, respectively, on tumor cell phenotype. As cancer biologists elucidate the relevance of 3D in vitro tumor models within the drug discovery pipeline, it has become more compelling to model the tumor microenvironment and its impact on tumor cells. In particular, permeability gradients within solid tumors are inherently complex and difficult to accurately model in vitro. However, 3D printing can be used to design scaffolds with complex architecture, and flow perfusion can simulate mechanical stimulation within the tumor…
3D Printing of Food for People with Swallowing Difficulties
Dysphagia affects many people worldwide. Modifying foods to standard consistencies, and manual design and assembly of foods for the daily requirements of people with dysphagia is challenging. People with dysphagia may develop a dislike for pureed foods due to the unattractiveness of the appearance of the foods, the lack of variety in daily meals, and the diluted taste of meals. Three-dimensional (3D) food printing is emerging as a method for making foods for people with special mealtime needs. Very few efforts have been made to apply 3D food printing to improving the lives of people with special mealtime needs such…