3D Bioplotter Research Papers

Displaying all papers by N. Mountakis (4 results)

Robust design optimization of Critical Quality Indicators (CQIs) of medical-graded polycaprolactone (PCL) in bioplotting

Bioprinting 2024 Volume 43, Article e00361

Polycaprolactone (PCL), either in its pure grade or as a polymeric matrix for bio-composites, plays a key role in the biomedical and bioengineering industries. It is also considered a multifunctional and versatile polymer for bioprinting and bioplotting purposes, especially in tissue engineering. Herein, an undiscovered yet valuable aspect of PCL extrusion-based bioprinting, such as the predictability of Critical Quality Indicators (CQIs), is investigated in depth. With the aid of the robust L25 orthogonal matrix design, the six most generic and device-independent control factors proved their impact on quality metrics such as global porosity, dimensional conformity, and surface roughness, determined with…

PCL

Optimization of the engineering response of medical-graded polycaprolactone (PCL) over multiple generic control parameters in bioplotting

The International Journal of Advanced Manufacturing Technology 2024 Volume 135, pages 2373–2395

Bioplotting has high potential for the 3D printing of scaffolds and cellular structures. Medical-grade poly(ε-caprolactone) (PCL) is characterized by low 3D printing temperatures and strengths compared to those of common polymers. Thus far, research on PCL in bioplotting has mainly focused on improving its performance through the development of composites. In this study, the quantitative impact of six common 3D plotting settings on the engineering strength of PCL parts was evaluated. Three modeling approaches were implemented: linear regression modeling (LRM), reduced quadratic regression modeling, and quadratic regression modeling. The LRM results were not as accurate as those obtained using the…

PCL

Optimization of cellulose nanocrystal (CNC) concentration in polycaprolactone bio-composites for bio-plotting: a robust interpretation of the reinforcement mechanisms

Cellulose 2024 Volume 31, Pages 3657–3680

Bioabsorbable and biodegradable composites have experienced rapid growth, owing to their high demand in the biomedical sector. Polymer-cellulose nanocrystal (CNC) compounds were developed using a medical-grade poly (ε-caprolactone) (PCL) matrix to improve the stiffness and load-bearing capacity of pure PCL. Five PCL/CNCs filament grades were melt-extruded, pelletized, and fed into an industrial bioplotter to fabricate specimens. To assess the effects of CNCs on pure PCL, 14 tests were conducted, including rheological, thermomechanical, and in situ micro-mechanical testing, among others. The porosity and dimensional accuracy of the samples were also documented using micro-computed tomography while scanning electron microscopy was employed for…

Optimized PCL/CNF bio-nanocomposites for medical bio-plotted applications: Rheological, structural, and thermomechanical aspects

Bioprinting 2023 Volume 36, Article e00311

The use of bioabsorbable and biodegradable composites in the medical field has experienced significant growth. Cellulose nanofibers (CNF) have been employed to reinforce medical-grade poly[ε-caprolactone], enhancing both its load-bearing capacity and stiffness compared to pure polycaprolactone PCL. The manufacturing process involved a series of steps applied to five different grades of PCL/CNF filaments. Initially, melt extrusion and pelletization were performed on the filament, followed by 3D bioplotting to create the specimens. The influence of CNF reinforcement on poly[ε-caprolactone] was evaluated through a range of tests, including rheological, thermomechanical, and in situ micromechanical assessments. To further characterize the samples, Micro-Computed Tomography…