3D Bioplotter Research Papers
Performance of Mg stabilised Na-β’’-alumina solid electrolytes prepared by direct ink writing
Mg-stabilised Na-β’’-alumina solid electrolyte (Mg-BASE) for Na-ion batteries was synthesised and fabricated into 3D structures via direct ink writing (DIW), an extrusion-based additive manufacturing process. To produce a water-based ink with optimum viscoelastic properties and supreme printing quality, a comprehensive investigation of ink formulation and printing parameters was conducted. The sintered 3D structures of Mg-BASE, fabricated via direct ink writing, achieved relative density of 98.0 ± 1.1 % with β’’ phase fraction of 99.7 wt% whilst bulk ionic conductivity of 0.081 S⋅cm−1 at 350 °C was obtained. XRD results indicated that Mg-BASE fabricated via DIW may have different c-axis orientation than conventional dry-pressed pellets, leading to…
Rapid manufacture of sodium polyaluminate electrolyte ceramics for solid state batteries via direct ink writing
Solid-state electrolyte structures using sodium polyaluminate ceramics, have been fabricated for the first time using direct ink writing; a material extrusion-based additive manufacturing process. A series of test samples were prepared using a high solids loading (80 wt%; 51.2 vol%) ceramic paste formulations with suitable rheological characteristics for 3D printing. Following optimum densification via conventional sintering at 1600 °C for 30 min, the additively manufactured electrolyte test samples exhibited an ionic conductivity of σ = 0.14 ± 0.019 S·cm−1 at 300 °C and density of ρ = 3.1 ± 0.02 g·cm−3 (relative density of 95%). These results suggest that direct ink writing of sodium polyaluminates…