3D Bioplotter Research Papers
3D Bioprinting of the Sustained Drug Release Wound Dressing with Double-Crosslinked Hyaluronic-Acid-Based Hydrogels
Hyaluronic acid (HA)-based hydrogels are widely used in biomedical applications due to their excellent biocompatibility. HA can be Ultraviolet (UV)-crosslinked by modification with methacrylic anhydride (HA-MA) and crosslinked by modification with 3,3′-dithiobis(propionylhydrazide) (DTP) (HA-SH) via click reaction. In the study presented in this paper, a 3D-bioprinted, double-crosslinked, hyaluronic-acid-based hydrogel for wound dressing was proposed. The hydrogel was produced by mixing HA-MA and HA-SH at different weight ratios. The rheological test showed that the storage modulus (G’) of the HA-SH/HA-MA hydrogel increased with the increase in the HA-MA content. The hydrogel had a high swelling ratio and a high controlled degradation…
Material design and photo-regulated hydrolytic degradation behavior of tissue engineering scaffolds fabricated via 3D fiber deposition
An ideal behavior of a tissue engineering scaffold is that it degrades and reshapes at a rate that matches the formation of new tissues. However, this ideal situation may not occur as the scaffold often undergoes too slow or too fast degradation. To test the promise of the active control of scaffold degradation, in this work, a photo/water dual-degradable porous scaffold was designed and fabricated using a 3D fiber deposition (3DF) system from a linear biopolymer (named PLANB) that combined the o-nitrobenzyl linkages and hydrolysable ester bone in the polymer chains. The chemical structure, molecular weight and polydispersity of PLANB…