3D-printed IFN-γ-loading calcium silicate-β-tricalcium phosphate scaffold sequentially activates M1 and M2 polarization of macrophages to promote vascularization of tissue engineering bone

Acta Biomaterialia 2018 Volume 71, Pages 96-107

To promote vascularization of tissue-engineered bone, IFN-γ polarizing macrophages to M1 was loaded on 5% calcium silicate/β-tricalcium phosphate (CaSiO3-β-TCP) scaffolds. IFN-γ and Si released from the scaffold were designed to polarize M1 and M2 macrophages, respectively. β-TCP, CaSiO3-β-TCP, and IFN-γ@CaSiO3-β-TCP were fabricated and biocompatibilities were evaluated. Polarizations of macrophages were detected by flow cytometry. Human umbilical vein endothelial cells with GFP were cultured and induced on Matrigel with conditioned culture medium extracted from culture of macrophages loaded on scaffolds for evaluating angiogenesis. Four weeks after the scaffolds were subcutaneously implanted into C57B1/6, vascularization was evaluated by visual observation, hematoxylin and eosin staining, as well as immunohistochemistry of CD31. The results showed that IFN-γ@CaSiO3-β-TCP scaffolds released IFN-γ in the early stage (1–3 days) to stimulate macrophages to M1 polarization, followed by release of Si inducing macrophages to M2 polarization while scaffolds degraded. The activation of M1/M2 allows macrophages to secrete more cytokines, including VEGF, CXCL12 and PDGF-BB. The IFN-γ@CaSiO3-β-TCP scaffolds formed more blood vessels in vitro and in vivo compared to the control groups. The study indicated that the design of tissue-engineered scaffolds with immunomodulatory function utilized host macrophages to increase vascularization of tissue-engineered bone, providing a new strategy for accelerating vascularization and osteogenesis of tissue-engineered scaffolds and showing the potential for treatment of major bone defects.