3D Printing Bioactive PLGA Scaffolds Using DMSO as a Removable Solvent
Present bioprinting techniques lack the methodology to print with bioactive materials that retain their biological functionalities. This constraint is due to the fact that extrusion-based printing of synthetic polymers is commonly performed at very high temperatures in order to achieve desired mechanical properties and printing resolutions. Consequently, current methodology prevents printing scaffolds embedded with bioactive molecules, such as growth factors. With the wide use of mesenchymal stem cells (MSCs) in regenerative medicine research, the integration of growth factors into 3D printed scaffolds is critical because it can allow for inducible MSC differentiation. We have successfully incorporated growth factors into extrusion printed poly (lactic-co-glycolic acid) (PLGA) scaffolds by introducing dimethyl sulfoxide (DMSO) for low temperature printing. Mechanical testing results demonstrated significantly different compressive and tensile properties for PLGA scaffold printed with or without DMSO. In particular, the PLGA-DMSO scaffold displayed a highly stretchable feature compared to the regular PLGA scaffold. The cellular response of growth factor introduction was evaluated in vitro using human mesenchymal stem cells (hMSCs). By evaporating the DMSO after printing, we ensured that there was no cytotoxic effect on seeded hMSCs. The addition of lineage specific growth factors led to increased expression of corresponding genetic markers for chondrogenesis, osteogenesis, and adipogenesis. We concluded that the use of DMSO for 3D printed scaffold fabrication with bioactive items is a revolutionary methodology in advancing regenerative medicine. The incorporation of bioactive molecules opens pathways to more therapeutic uses for 3D printing in treating damaged or deteriorating native tissue.