3D Bioplotter Research Papers

Displaying all papers by A. Argyros (2 results)

Optimization of cellulose nanocrystal (CNC) concentration in polycaprolactone bio-composites for bio-plotting: a robust interpretation of the reinforcement mechanisms

Cellulose 2024 Volume 31, Pages 3657–3680

Bioabsorbable and biodegradable composites have experienced rapid growth, owing to their high demand in the biomedical sector. Polymer-cellulose nanocrystal (CNC) compounds were developed using a medical-grade poly (ε-caprolactone) (PCL) matrix to improve the stiffness and load-bearing capacity of pure PCL. Five PCL/CNCs filament grades were melt-extruded, pelletized, and fed into an industrial bioplotter to fabricate specimens. To assess the effects of CNCs on pure PCL, 14 tests were conducted, including rheological, thermomechanical, and in situ micro-mechanical testing, among others. The porosity and dimensional accuracy of the samples were also documented using micro-computed tomography while scanning electron microscopy was employed for…

Optimized PCL/CNF bio-nanocomposites for medical bio-plotted applications: Rheological, structural, and thermomechanical aspects

Bioprinting 2023 Volume 36, Article e00311

The use of bioabsorbable and biodegradable composites in the medical field has experienced significant growth. Cellulose nanofibers (CNF) have been employed to reinforce medical-grade poly[ε-caprolactone], enhancing both its load-bearing capacity and stiffness compared to pure polycaprolactone PCL. The manufacturing process involved a series of steps applied to five different grades of PCL/CNF filaments. Initially, melt extrusion and pelletization were performed on the filament, followed by 3D bioplotting to create the specimens. The influence of CNF reinforcement on poly[ε-caprolactone] was evaluated through a range of tests, including rheological, thermomechanical, and in situ micromechanical assessments. To further characterize the samples, Micro-Computed Tomography…