3D Bioplotter Research Papers
Constructing a Wireless Nerve Electrical Stimulation System to Repair Peripheral Nerve Defects
Purpose: The repair effect of peripheral nerve injury mainly depends on rapid regeneration of proximal axons, accurate docking, and effective nerve re-innervation of target organs. Accordingly, identifying effective methods to protect the functional state of target organs and realize rapid regeneration of proximal nerve fibers is of great significance. The purpose of this study is to build a nervous electrical stimulation system powered by electromagnetic induction and evaluate its repair effect on a rat sciatic nerve defect model. Methods: Biodegradable materials [magnesium (Mg), polylactic acid (PLLA), chitosan, and silk fibroin] were chosen to build thein vivo part of the wireless…
Protein-releasing polymeric scaffolds induce fibrochondrocytic differentiation of endogenous cells for knee meniscus regeneration in sheep
Regeneration of complex tissues, such as kidney, liver, and cartilage, continues to be a scientific and translational challenge. Survival of ex vivo cultured, transplanted cells in tissue grafts is among one of the key barriers. Meniscus is a complex tissue consisting of collagen fibers and proteoglycans with gradient phenotypes of fibrocartilage and functions to provide congruence of the knee joint, without which the patient is likely to develop arthritis. Endogenous stem/progenitor cells regenerated the knee meniscus upon spatially released human connective tissue growth factor (CTGF) and transforming growth factor–β3 (TGFβ3) from a three-dimensional (3D)–printed biomaterial, enabling functional knee recovery. Sequentially…