3D Bioplotter Research Papers
A 3D-printed PCL/PEI/DNA bioactive scaffold for chemotherapy drug capture in vivo
Systemic chemotherapy after surgery is necessary to control tumor recurrence, but the severe side effects caused by chemotherapeutic drugs pose a great threat to patients’ health. In this study, we originally develop a porous scaffold used for chemotherapy drug capture by using 3D printing technology. The scaffold is mainly composed of poly (ε-caprolactone) (PCL) and polyetherimide (PEI) with a mass ratio of 5/1. Subsequently, the printed scaffold is modified with DNA through the strong electrostatic integration between DNA and PEI to endow the scaffold with the specific absorption to doxorubicin (DOX, a widely used chemotherapy drug). The results show that…
3D printing MOF nanozyme hydrogel with dual enzymatic activities and visualized glucose monitoring for diabetic wound healing
Promoting rapid healing of diabetic wounds caused by hyperglycemia, bacterial infection, and chronic inflammation is a global challenge. To address this issue, we design and prepare a novel cerium-based MOF nanozyme hydrogel via 3D printing technology to provide a personalized hydrogel wound dressing. The hydrogel is unique in that cerium-based MOFs are grown into the hydrogel network, simplifying the printing process of MOF hydrogel. The prepared hydrogel exhibits specific catalytic activity to various oxygen free radicals and glucose concentration-dependent color changes due to the interconversion between different valence cerium ions. This feature allows for indirect monitoring of glucose content around…