3D Bioplotter Research Papers

Displaying all papers by L. A. E. Müller (3 results)

Photoresponsive Movement in 3D Printed Cellulose Nanocomposites

ACS Applied Materials & Interfaces 2022 Volume 14, Issue 14, Pages 16703-16717

Photoresponsive soft liquid crystalline elastomers (LCEs) transform light’s energy into dynamic shape changes and are considered promising candidates for production of soft robotic or muscle-like devices. 3D printing allows access to elaborated geometries as well as control of the photoactuated movements; however, this development is still in its infancy and only a limited choice of LCE is yet available. Herein, we propose to introduce biocompatible and sustainable cellulose nanocrystals (CNC) into an LCE in order to facilitate the printing process by direct ink writing (DIW) and to benefit from the anisotropic mechanical properties resulting from the extrusion-induced alignment of such…

Functionalized Cellulose Nanocrystals as Active Reinforcements for Light-Actuated 3D-Printed Structures

ACS Nano 2022 Volume 16, Issue 11, Pages 18210-18222

Conventional manufacturing techniques allow the production of photoresponsive cellulose nanocrystals (CNC)-based composites that can reversibly modify their optical, mechanical, or chemical properties upon light irradiation. However, such materials are often limited to 2D films or simple shapes and do not benefit from spatial tailoring of mechanical properties resulting from CNC alignment. Herein, we propose the direct ink writing (DIW) of 3D complex structures that combine CNC reinforcement effects with photoinduced responses. After grafting azobenzene photochromes onto the CNC surfaces, up to 15 wt % of modified nanoparticles can be introduced into a polyurethane acrylate matrix. The influence of CNC on…

Mechanical Properties Tailoring of 3D Printed Photoresponsive Nanocellulose Composites

Advanced Functional Materials 2020 Volume 30, Issue 35, Article 2002914

3D printing technologies allow control over the alignment of building blocks in synthetic materials, but compositional changes often require complex multimaterial printing steps. Here, 3D printable materials showing locally tunable mechanical properties are produced in a single printing step of Direct Ink Writing. These new inks consist of a polymer matrix bearing biocompatible photoreactive cinnamate derivatives and up to 30 wt% of anisotropic cellulose nanocrystals. The printed materials are mechanically versatile and can undergo further crosslinking upon illumination. When illuminating the material and controlling the irradiation doses, the Young’s moduli can be adjusted between 15 and 75 MPa. Moreover, spatially…