3D Bioplotter Research Papers
Systematic development and bioprinting of novel nanostructured multi-material bioinks for bone tissue engineering
A functional bioink with potential in bone tissue engineering must be subjected to critical investigation throughout its intended lifespan. The aim of this study was to develop alginate–gelatin-based (Alg–Gel) multicomponent bioinks systematically and to assess the short- and long-term exposure responses of human bone marrow stromal cells (hBMSCs) printed within these bioinks with and without crosslinking. The first generation of bioinks was established by incorporating a range of cellulose nanofibrils (CNFs), to evaluate their effect on viscosity, printability and cell viability. Adding CNFs to Alg–Gel solution increased viscosity and printability without compromising cell viability. In the second generation of bioinks,…
Coating 3D Printed Polycaprolactone Scaffolds with Nanocellulose Promotes Growth and Differentiation of Mesenchymal Stem Cells
3D printed polycaprolactone (PCL) has potential as a scaffold for bone tissue engineering, but the hydrophobic surface may hinder optimal cell responses. The surface properties can be improved by coating the scaffold with cellulose nanofibrils material (CNF), a multiscale hydrophilic biocompatible biomaterial derived from wood. In this study, human bone marrow-derived mesenchymal stem cells were cultured on tissue culture plates (TCP) and 3D printed PCL scaffolds coated with CNF. Cellular responses to the surfaces (viability, attachment, proliferation, and osteogenic differentiation) were documented. CNF significantly enhanced the hydrophilic properties of PCL scaffolds and promoted protein adsorption. Live/dead staining and lactate dehydrogenase…