3D Bioplotter Research Papers
Polycaprolactone strengthening gelatin/nano-hydroxyapatite composite biomaterial inks for potential application in extrusion-based 3D printing bone scaffolds
Extrusion-based three-dimensional (3D) printing of gelatin (Gel) is crucial for fabricating bone tissue engineering scaffolds via additive manufacturing. However, the thermal instability of Gel remains a persistent challenge, as it tends to collapse at mild temperatures. Current approaches often involve simply mixing Gel particles with various materials, resulting in biomaterial inks that lack uniformity and have inconsistent degradation characteristics. In this study, acetic acid was used to dissolve Gel and polycaprolactone (PCL) separately, producing homogeneous Gel/PCL dispersions with optimal pre-treatment performance. These dispersions were then combined and hybridized with nano-hydroxyapatite (n-HA) to create a composite printing ink. By evaluating the…
Engineering hiPSC-CM and hiPSC-EC laden 3D nanofibrous splenic hydrogel for improving cardiac function through revascularization and remuscularization in infarcted heart
Cell therapy has been a promising strategy for cardiac repair after myocardial infarction (MI), but a poor ischemic environment and low cell delivery efficiency remain significant challenges. The spleen serves as a hematopoietic stem cell niche and secretes cardioprotective factors after MI, but it is unclear whether it could be used for human pluripotent stem cell (hiPSC) cultivation and provide a proper microenvironment for cell grafts against the ischemic environment. Herein, we developed a splenic extracellular matrix derived thermoresponsive hydrogel (SpGel). Proteomics analysis indicated that SpGel is enriched with proteins known to modulate the Wnt signaling pathway, cell-substrate adhesion, cardiac…