3D Bioplotter Research Papers
FRESH 3D Bioprinting of Alginate – Cellulose – Gelatin Constructs for Soft Tissue Biofabrication
The fabrication of three-dimensional (3D) bioprinted free-standing, low viscous, cell-laden hydrogels with good resolution, low cytotoxicity, and mechanical properties, comparable to native soft tissues, is a current challenge in tissue engineering. Recently, a new syringe extrusion approach, called Freeform Reversible Embedding of Suspended Hydrogels (FRESH), has been introduced to enhance 3D-bioprinting of soft hydrogels. Printing is conducted with the material embedded in a thermo-reversible gelatin bath, which acts as supporting material and can also initiate in-situ crosslinking when proper crosslinker agents are added. This work is the first to develop a 3D FRESH printable, low-cost, polymeric hydrogel composed of sodium…
Bioprinting process optimization: evaluation of parameters influence on the extrusion of inorganic polymers
Bioprinting consists in an innovative approach able to improve the current techniques of bioregeneration in the medical field through the extrusion of cell-loaded bioinks. Its main advantage is the customization to reduce post-operative complications on the patient, as it can be produced from his own cells. The success of bioprinting is determined by the printing parameters but, above all, by the materials. The goal of this work was to define a range of parameters, in order to achieve the highest printing stability, in terms of the quality of the Bioplotter® Silicone TG in relation to process conditions used.
Bioprinting process optimization: case study on PVA (Polyvinyl Alcohol) and Graphene Oxide biocompatible hydrogels
Scaffolds manufacturing for tissue engineering is an elaborate process since to fabricate a functional tissue, the engineered structures have to mimic the extracellular matrix. The key goal is to produce 3D scaffolds composed of macro- and micro- scale structures. The combination of different production technologies, as 3D bioprinting (BP) and electrospinning (ES), enables the fabrication of multiscale structures but, above all, the biomaterial choice is crucial to apply these technologies. Hydrogels based of Polyvinyl alcohol (PVA), a water soluble and biodegradable polymer, are able to create a highly hydrated environment that promotes cell attachment and proliferation, with limited mechanical properties.…
Evaluation of Bioprinting Process by RSM Training
Bioprinting is one of the newest but mostly studied additive manufacturing processes of the last decade. Despite the huge amount of literature on this topic, a huge amount of aspects still have to be fully investigated. Precisely, each 3D printing process is characterized by a low stability and difficult replicability, in relation to conventional processes. For this reason, research on process control and optimization is one of the trending aspects nowadays. In this work, the Response Surface Methodology (RSM) approach is applied to 3D printing of hydrogel for biomedical applications and specifically of biocompatible hydrogels for cell-laden direct bioprinting purposes.…