3D Bioplotter Research Papers
Large artificial bone from 3D printed polycaprolactone/β-tricalcium phosphate (3D PCL/β-TCP) effectively promoting MC3T3-E1 cell adhesion, proliferation, and new bone formation
The use of 3D printing technology has advanced the bone tissue engineering, and constructing large artificial bones for repairing large-scale bone defects is highly significant. This study aimed to construct large artificial bones in a precise and controllable manner, focusing on repairing critical-sized bone defects. The researchers used 3D printing technology to synthesize 3D PCL/β-TCP, and then evaluated its ability to promote MC3T3-E1 cell adhesion, proliferation, and new bone formation through a series of characterizations. The results confirmed that 3D PCL/β-TCP, presented as a lattice structure similar to natural bone, could be used to prepare personalized artificial bone blocks based…
Fabrication of a bio-instructive scaffold conferred with a favorable microenvironment allowing for superior implant osseointegration and accelerated in situ vascularized bone regeneration via type H vessel formation
The potential translation of bio-inert polymer scaffolds as bone substitutes is limited by the lack of neovascularization upon implantation and subsequently diminished ingrowth of host bone, most likely resulted from the inability to replicate appropriate endogenous crosstalk between cells. Human umbilical vein endothelial cell-derived decellularized extracellular matrix (HdECM), which contains a collection of angiocrine biomolecules, has recently been demonstrated to mediate endothelial cells(ECs) – osteoprogenitors(OPs) crosstalk. We employed the HdECM to create a PCL (polycaprolactone)/fibrin/HdECM (PFE) hybrid scaffold. We hypothesized PFE scaffold could reconstitute a bio-instructive microenvironment that reintroduces the crosstalk, resulting in vascularized bone regeneration. Following implantation in a…