3D Bioplotter Research Papers

Displaying all papers by R. M. Ferraro (2 results)

Three-Dimensional-Bioprinted Embedded-Based Cerebral Organoids: An Alternative Approach for Mini-Brain In Vitro Modeling Beyond Conventional Generation Methods

Gels 2025 Volume 11, Issue 4, Article 284

Cerebral organoids (cORGs) obtained from induced pluripotent stem cells (iPSCs) have become significant instruments for investigating human neurophysiology, with the possibility of simulating diseases and enhancing drug discovery. The current approaches require a strict process of manual inclusion in animal-derived matrix Matrigel® and are challenged by unpredictability, operators’ skill and expertise, elevated costs, and restricted scalability, impeding their extensive applicability and translational potential. In this study, we present a novel method to generate brain organoids that address these limitations. Our approach does not require a manual, operator-dependent embedding. Instead, it employs a chemically defined hydrogel in which the Matrigel® is…

Optimization of the FRESH 3D Printing Method Applied to Alginate – Cellulose-Based Hydrogels

International Symposium on Industrial Engineering and Automation 2023 Pages 499-509

In recent years, a new additive manufacturing (AM) method for three-dimensional (3D) syringe-extrusion (bio)printing of soft hydrogels has been introduced under the name of Freeform Reversible Embedding of Suspended Hydrogels (FRESH). The most common FRESH bath contains gelatin as the main compound and low concentrations of crosslinker(s) (whose nature depends on the hydrogel) for the initiation of an in-situ pre-crosslinking process during printing. In the case of sodium alginate (SA)-based hydrogels ionically crosslinked via calcium chloride (CaCl2), the crosslinker percentage in the gelatin bath is equal to ~10 mM, usually combined with a post-crosslinking at higher concentrations. However, according to the…