3D Bioplotter Research Papers
Spatial Growth Factor Delivery for 3D Bioprinting of Vascularized Bone with Adipose-Derived Stem/Stromal Cells as a Single Cell Source
Encapsulating multiple growth factors within a scaffold enhances the regenerative capacity of engineered bone grafts through their localization and controls the spatiotemporal release profile. In this study, we bioprinted hybrid bone grafts with an inherent built-in controlled growth factor delivery system, which would contribute to vascularized bone formation using a single stem cell source, human adipose-derived stem/stromal cells (ASCs) in vitro. The strategy was to provide precise control over the ASC-derived osteogenesis and angiogenesis at certain regions of the graft through the activity of spatially positioned microencapsulated BMP-2 and VEGF within the osteogenic and angiogenic bioink during bioprinting. The 3D-bioprinted…
3D printed hydrogel scaffold promotes the formation of hormone-active engineered parathyroid tissue
The parathyroid glands are localized at the back of the thyroid glands in the cervical region and are responsible for regulation of the calcium level in the blood, through specialized cells that sense Ca2+ and secrete parathyroid hormone (PTH) in response to a decline in its serum level. PTH stimulates the skeleton, kidneys and intestines and controls the level of Ca2+ through specialized activities. Iatrogenic removal of the parathyroid gland, as well as damage to its vascular integrity during cauterization are some of the common complications of thyroid surgery. Therefore, regeneration and/or replacement of malfunctioning parathyroid tissue is required. Tissue…
3D Printed Biodegradable Polyurethaneurea Elastomer Recapitulates Skeletal Muscle Structure and Function
Effective skeletal muscle tissue engineering relies on control over the scaffold architecture for providing muscle cells with the required directionality, together with a mechanical property match with the surrounding tissue. Although recent advances in 3D printing fulfill the first requirement, the available synthetic polymers either are too rigid or show unfavorable surface and degradation profiles for the latter. In addition, natural polymers that are generally used as hydrogels lack the required mechanical stability to withstand the forces exerted during muscle contraction. Therefore, one of the most important challenges in the 3D printing of soft and elastic tissues such as skeletal…
Recycled algae-based carbon materials as electroconductive 3D printed skeletal muscle tissue engineering scaffolds
Skeletal muscle is an electrically and mechanically active tissue that contains highly oriented, densely packed myofibrils. The tissue has self-regeneration capacity upon injury, which is limited in the cases of volumetric muscle loss. Several regenerative therapies have been developed in order to enhance this capacity, as well as to structurally and mechanically support the defect site during regeneration. Among them, biomimetic approaches that recapitulate the native microenvironment of the tissue in terms of parallel-aligned structure and biophysical signals were shown to be effective. In this study, we have developed 3D printed aligned and electrically active scaffolds in which the electrical…
3D Printing of Elastomeric Biomaterials
A key challenge towards engineering 3D printed soft tissues is the availability of proper scaffolding materials with enough load carrying capacity. In this study, we synthesized biocompatible and biodegradable, elastomeric polyurethaneureas (TPUU) and investigated the applicability of these novel materials as 3D printed load carrying constructs.