3D Bioplotter Research Papers

Displaying all papers by S. Han (3 results)

Constructing a Wireless Nerve Electrical Stimulation System to Repair Peripheral Nerve Defects

Authorea 2024 Preprint

Purpose: The repair effect of peripheral nerve injury mainly depends on rapid regeneration of proximal axons, accurate docking, and effective nerve re-innervation of target organs. Accordingly, identifying effective methods to protect the functional state of target organs and realize rapid regeneration of proximal nerve fibers is of great significance. The purpose of this study is to build a nervous electrical stimulation system powered by electromagnetic induction and evaluate its repair effect on a rat sciatic nerve defect model. Methods: Biodegradable materials [magnesium (Mg), polylactic acid (PLLA), chitosan, and silk fibroin] were chosen to build thein vivo part of the wireless…

Novel 3D-printing bilayer GelMA-based hydrogel containing BP, β-TCP and exosomes for cartilage–bone integrated repair

Biofabrication 2024 Volume 16, Number, Article 015008

The integrated repair of cartilage and bone involves the migration and differentiation of cells, which has always been a difficult problem to be solved. We utilize the natural biomaterial gelatin to construct gelatin methacryloyl (GelMA), a hydrogel scaffold with high cell affinity. GelMA is mixed with different components to print a bi-layer porous hydrogel scaffold with different modulus and composition in upper and lower layers through three-dimensional (3D) printing technology. The upper scaffold adds black phosphorus (BP) and human umbilical cord mesenchymal stem cells (hUMSCs) exosomes (exos) in GelMA, which has a relatively lower elastic modulus and is conducive to…

3D printing of free-standing and flexible nitrogen doped graphene/ polyaniline electrode for electrochemical energy storage

Chemical Physics Letters 2019 Volume 728, August 2019, Pages 6-13

Flexible graphene film can be quickly realized by three-dimensional printing (3D printing), which has the potential in functional electronic devices. With a trace of cobalt ions as crosslinker, the graphene oxide sol can be converted into 3D printed ink, overcoming the disadvantage of insufficient viscosity of pure graphene oxide ink. The various graphene architectures were successfully obtained by 3D printing, moreover, graphene/polyaniline composites were obtained by electropolymerization. The specific capacitance of graphene/polyaniline electrode achieved up to 238 F/g at the current density of 0.5 A/g, which was much higher than that of graphene electrode (35 F/g).