3D Bioplotter Research Papers

Displaying all papers by S. Mohamed-Ahmed (5 results)

Correlation between Ca Release and Osteoconduction by 3D-Printed Hydroxyapatite-Based Templates

ACS Applied Materials & Interfaces 2024 Volume 16, Issue 22, Pages 28056–28069

The application of hydroxyapatite (HA)-based templates is quite often seen in bone tissue engineering since that HA is an osteoconductive bioceramic material, which mimics the inorganic component of mineralized tissues. However, the reported osteoconductivity varies in vitro and in vivo, and the levels of calcium (Ca) release most favorable to osteoconduction have yet to be determined. In this study, HA-based templates were fabricated by melt-extrusion 3D-printing and characterized in order to determine a possible correlation between Ca release and osteoconduction. The HA-based templates were blended with poly(lactide-co-trimethylene carbonate) (PLATMC) at three different HA ratios: 10, 30, and 50%. The printability…

Contact osteogenesis by biodegradable 3D-printed poly(lactide-co-trimethylene carbonate)

Biomaterials Research 2022 Volume 26, Article 55

Background To support bone regeneration, 3D-printed templates function as temporary guides. The preferred materials are synthetic polymers, due to their ease of processing and biological inertness. Poly(lactide-co-trimethylene carbonate) (PLATMC) has good biological compatibility and currently used in soft tissue regeneration. The aim of this study was to evaluate the osteoconductivity of 3D-printed PLATMC templates for bone tissue engineering, in comparison with the widely used 3D-printed polycaprolactone (PCL) templates. Methods The printability and physical properties of 3D-printed templates were assessed, including wettability, tensile properties and the degradation profile. Human bone marrow-derived mesenchymal stem cells (hBMSCs) were used to evaluate osteoconductivity and…

3D printed gelatin-genipin scaffolds for temporomandibular joint cartilage regeneration

Biomedical Physics & Engineering Express 2021 Volume 7, Number 5, Article 055025

Gelatin has emerged as a biocompatible polymer with high printability in scaffold-based tissue engineering. The aim of the current study was to investigate the potential of genipin-crosslinked 3D printed gelatin scaffolds for temporomandibular joint (TMJ) cartilage regeneration. Crosslinking with genipin increased the stability and mechanical properties, without any cytotoxic effects. Chondrogenic differentiation of human bone marrow-derived mesenchymal stem cells (hBMSC) on the scaffolds were compared to cell pellets and spheres. Although hBMSC seeded scaffolds showed a lower expression of chondrogenesis-related genes compared to cell pellets and spheres, they demonstrated a significantly reduced expression of collagen (COL) 10, suggesting a decreased…

Engineering 3D degradable, pliable scaffolds toward adipose tissue regeneration; optimized printability, simulations and surface modification

Journal of Tissue Engineering 2020 Volume 11, Pages 1-17

We present a solution to regenerate adipose tissue using degradable, soft, pliable 3D-printed scaffolds made of a medical-grade copolymer coated with polydopamine. The problem today is that while printing, the medical grade copolyesters degrade and the scaffolds become very stiff and brittle, being not optimal for adipose tissue defects. Herein, we have used high molar mass poly(L-lactide-co-trimethylene carbonate) (PLATMC) to engineer scaffolds using a direct extrusion-based 3D printer, the 3D Bioplotter®. Our approach was first focused on how the printing influences the polymer and scaffold’s mechanical properties, then on exploring different printing designs and, in the end, on assessing surface…

Coating 3D Printed Polycaprolactone Scaffolds with Nanocellulose Promotes Growth and Differentiation of Mesenchymal Stem Cells

Biomacromolecules 2018 Voluem 19, Issue 11, Pages 4307-4319

3D printed polycaprolactone (PCL) has potential as a scaffold for bone tissue engineering, but the hydrophobic surface may hinder optimal cell responses. The surface properties can be improved by coating the scaffold with cellulose nanofibrils material (CNF), a multiscale hydrophilic biocompatible biomaterial derived from wood. In this study, human bone marrow-derived mesenchymal stem cells were cultured on tissue culture plates (TCP) and 3D printed PCL scaffolds coated with CNF. Cellular responses to the surfaces (viability, attachment, proliferation, and osteogenic differentiation) were documented. CNF significantly enhanced the hydrophilic properties of PCL scaffolds and promoted protein adsorption. Live/dead staining and lactate dehydrogenase…