3D Bioplotter Research Papers
Introduction of an Ambient 3D-Printable Hydrogel Ink to Fabricate an Enzyme-Immobilized Platform with Tunable Geometry for Heterogeneous Biocatalysis
An enzyme-immobilized platform for biocatalysis was developed through 3D printing of a hydrogel ink comprising dimethacrylate-functionalized Pluronic F127 (F127-DMA) and sodium alginate (Alg) with laccase that can be done at ambient temperature, followed by UV-induced cross-linking. Laccase is an enzyme that can degrade azo dyes and various toxic organic pollutants. The fiber diameter, pore distance, and surface-to-volume ratio of the laccase-immobilized and 3D-printed hydrogel constructs were varied to determine their effects on the catalytic activity of the immobilized enzyme. Among the three geometrical designs investigated, the 3D-printed hydrogel constructs with flower-like geometry exhibited better catalytic performance than those with cubic…
Shape transformation of 4D printed edible insects triggered by thermal dehydration
Insect-based food was fabricated by 3D printing of edible insect inks (cricket; CK or silkworm; SW) aiming to produce an alternative and sustainable food with high protein for a variety of consumers. CK and SW of 30% (w/v) together with 5%(w/v) sodium alginate can be 3D-printed into several designed geometries with fine resolution. 4D shape transformation as triggered by thermal stimuli at 80 °C of the printed insect-based objects was found to be varied with infill angle and infill pattern. The ability to form the CK/SW bilayer structure of which shape transformation upon thermal dehydration was similar to that of…