3D Bioplotter Research Papers

Displaying all papers by Y. Bai (3 results)

Harnessing decellularised extracellular matrix microgels into modular bioinks for extrusionbased bioprinting with good printability and high post-printing cell viability

Biomaterials Translational 2023 Volume 4, Issue 2, Pages 115-127

The printability of bioink and post-printing cell viability is crucial for extrusion-based bioprinting. A proper bioink not only provides mechanical support for structural fidelity, but also serves as suitable three-dimensional (3D) microenvironment for cell encapsulation and protection. In this study, a hydrogel-based composite bioink was developed consisting of gelatin methacryloyl (GelMA) as the continuous phase and decellularised extracellular matrix microgels (DMs) as the discrete phase. A flow-focusing microfluidic system was employed for the fabrication of cell-laden DMs in a high-throughput manner. After gentle mixing of the DMs and GelMA, both rheological characterisations and 3D printing tests showed that the resulting…

Tissue-Specific Hydrogels for Three-Dimensional Printing and Potential Application in Peripheral Nerve Regeneration

Tissue Engineering Part A 2022 Volume 28, Issue 3-4, Pages 161-174

Decellularized extracellular matrix hydrogel (dECM-G) has demonstrated its significant tissue-specificity, high biocompatibility, and versatile utilities in tissue engineering. However, the low mechanical stability and fast degradation are major drawbacks for its application in three-dimensional (3D) printing. Herein, we report a hybrid hydrogel system consisting of dECM-Gs and photocrosslinkable gelatin methacrylate (GelMA), which resulted in significantly improved printability and structural fidelity. These premixed hydrogels retained high bioactivity and tissue-specificity due to their containing dECM-Gs. More specifically, it was realized that the hydrogel containing dECM-G derived from porcine peripheral nerves (GelMA/pDNM-G) effectively facilitated neurite growth and Schwann cell migration from two-dimensional cultured…

Thiol-Rich Multifunctional Macromolecular Crosslinker for Gelatin- Norbornene-Based Bioprinting

Biomacromolecules 2021 Volume 22, Issue 6, Pages 2729-2739

Extrusion-based bioprinting is an emerging and most frequently used technique for the fabrication of cell-laden constructs. A suitable hydrogel-based bioink for cell encapsulation and protection is critical for printability, structural stability, and post-printing cell viability. The thiol–ene chemistry-based gelatin-norbornene (GelNB) hydrogels have drawn much attention as a promising substitution of gelatin methacryloyl (GelMA), owing to the fast and controllable step-growth polymerization mechanism, as well as a significant reduction in reactive oxygen species (ROS) accumulation. Herein, thiolated heparin (HepSH) was synthesized and used as a macromolecular crosslinker for GelNB-based bioprinting, so that GelNB gelation became less sensitive to the thiol/ene ratio.…