3D Bioplotter Research Papers
Towards sustainable, direct printed, organic transistors with biocompatible copolymer gate dielectrics
We have investigated the potential of three dielectric materials to meet the future demands of green dielectrics: Polycaprolactone (PCL) thermoplastic, polyvinyl alcohol (PVA)-carrageenan (CAR) crosslinked biopolymer, and boron nitride nanotubes (BNNTs) as a nano additive in PVA. Metal–insulator–metal (MIM) capacitors and organic thin film transistors (OTFT) were built with bilayer dielectric stacks of PVA-CAR, PVA-PCL, and PVA-BNNT materials to examine their electrical properties. The PVA-CAR layer uses a cyclic freeze thaw process to crosslink PVA and CAR for superior mechanical and electrical properties to either material alone. The PVA-CAR MIM capacitors showed a dielectric constant of 23, which was found…
3D printing of architectured graphene-based aerogels by cross-linking GO inks with adjustable viscoelasticity for energy storage devices
Three-dimensional (3D) functional graphene-based architecture with superior electrical conductivity and good mechanical strength has promising applications in energy storage and electrics. Viscoelasticity-adjustable inks make it possible to achieve desired 3D architectures with interconnected and continuous interior networks by micro-extrusion printing. In this work, ultra-low-concentration graphene oxide (GO) inks of ~ 15 mg·ml−1 have been obtained and demonstrated in direct 3D printing with a facile cross-linking (direct ink writing). The rheological behavior of the GO strategy by cations, which is the lowest concentration to achieve direct ink writing inks, could be adjusted from 1×104 to 1×105 Pa·s−1 with different concentrations of cations due to strong…
3D-printed composite scaffold with anti-infection and osteogenesis potential against infected bone defects
In the field of orthopedics, an infected bone defect is a refractory disease accompanied by bone infection and defects as well as aggravated circulation. There are currently no personalized scaffolds that can treat bone infections using local stable and sustained-release antibiotics while providing mechanical support and bone induction to promote bone repair in the process of absorption in vivo. In our previous study, rifampicin/moxifloxacin-poly lactic-co-glycolic acid (PLGA) microspheres were prepared and tested for sustained release and antibacterial activity. The composite scaffold of poly-L-lactic acid (PLLA)/Pearl had a positive effect on mechanics supports and promoted osteogenesis. Therefore, in this study, the…