3D Bioplotter Research Papers
Magnetically Actuated GelMA-Based Scaffolds as a Strategy to Generate Complex Bioprinted Tissues
The 3D bioprinting of complex structures has attracted particular attention in recent years and has been explored in several fields, including dentistry, pharmaceutical technology, medical devices, and tissue/organ engineering. However, it still possesses major challenges, such as decreased cell viability due to the prolongation of the printing time, along with difficulties in preserving the print shape. The 4D bioprinting approach, which is based on controlled shape transformation upon stimulation after 3D bioprinting, is a promising innovative method to overcome these difficulties. Herein, the generation of skeletal muscle tissue-like complex structures is demonstrated by 3D bioprinting of GelMA-based C2C12 mouse myoblast-laden…
The effect of the synthetic route on the biophysiochemical properties of methacrylated gelatin (GelMA) based hydrogel for development of GelMA-based bioinks for 3D bioprinting applications
Gelatin methacrylate (GelMA) is a widely used biomaterial in tissue engineering and regenerative medicine. GelMA is a chemically modified form of gelatin. Researchers have employed various methods to synthesize GelMA, such as the conventional method (Bulcke et al. 2000), the sequential method (Lee et al. 2015), and facile one-pot (Shirahama et al. 2016) methods to achieve GelMA hydrogels with a wide range of degree of functionalization or methacrylation. However, the impact of these different synthesis methods and their reac- tion parameters on GelMA hydrogels and scaffolds remains to be investigated concerning bioink formulation and 3D printing application. In this study,…
A Bioprinted Cardiac Patch Composed of Cardiac-Specific Extracellular Matrix and Progenitor Cells for Heart Repair
Congenital heart defects are present in 8 of 1000 newborns and palliative surgical therapy has increased survival. Despite improved outcomes, many children develop reduced cardiac function and heart failure requiring transplantation. Human cardiac progenitor cell (hCPC) therapy has potential to repair the pediatric myocardium through release of reparative factors, but therapy suffers from limited hCPC retention and functionality. Decellularized cardiac extracellular matrix hydrogel (cECM) improves heart function in animals, and human trials are ongoing. In the present study, a 3D‐bioprinted patch containing cECM for delivery of pediatric hCPCs is developed. Cardiac patches are printed with bioinks composed of cECM, hCPCs,…