3D Bioplotter Research Papers
Programmable 4D Printing of Photoactive Shape Memory Composite Structures
4D printing is an advanced manufacturing technology combining additive manufacturing with smart materials. Based on light-active shape memory composites, smart medical structures with remote control capability, therapeutic function, and biocompatibility are hopefully fabricated by 4D printing. Here, a multifunctional composite with good mechanical properties, biocompatibility, and light-active shape memory performance is prepared by incorporating gold nanoparticles into a shape memory polyurethane matrix. The composites demonstrate a rapid and stable light-thermal effect, which can achieve localized and controlled breast tumor ablation, providing an approach to hyperthermia treatment for cancer cells. By directly bioprinting the composite melt, a series of 4D-printed structures…
Hyperthermia Induced in Magnetic Scaffolds for Bone Tissue Engineering
The design and fabrication of advanced biocompatible and bioresorbable materials able to mimic the natural tissues present in the human body constitutes an important challenge in regenerative medicine. The size-dependent properties that materials exhibit at the nanoscale as a consequence of their higher surface-to-volume ratio have opened a wide range of opportunities for applications in almost every imaginable field. In this regard, the incorporation of magnetic nanoparticles (MNPs) into biocompatible scaffold formulations provides final materials with additional multifunctionality and reinforced mechanical properties for bone tissue engineering applications. In addition to the biological implications due to their magnetic character (i.e., magnetic…
3D-Printed Magnetic Fe3O4/MBG/PCL Composite Scaffolds with Multifunctionality of Bone Regeneration, Local Anticancer Drug Delivery and Hyperthermia
In this study, three-dimensional (3D) magnetic Fe3O4 nanoparticles containing mesoporous bioactive glass/polycaprolactone (Fe3O4/MBG/PCL) composite scaffolds have been fabricated by the 3D-printing technique. The physiochemical properties, in vitro bioactivity, anticancer drug delivery, mechanical strength, magnetic heating ability and cell response of Fe3O4/MBG/PCL scaffolds were systematically investigated. The results showed that Fe3O4/MBG/PCL scaffolds had uniform macropores of 400 μm, high porosity of 60% and excellent compressive strength of 13–16 MPa. The incorporation of magnetic Fe3O4 nanoparticles into MBG/PCL scaffolds did not influence their apatite mineralization ability but endowed excellent magnetic heating ability and significantly stimulated proliferation, alkaline phosphatase (ALP) activity, osteogenesis-related gene…