3D Bioplotter Research Papers
Bioactivity assessment of additively manufactured doped-HA composite scaffolds for bone tissue engineering
Composites are promising candidates for treating bone defects, but manufacturing of composite scaffolds is challenging. This study aimed to fabricate composite scaffolds based on polycaprolactone (PCL) and doped Hydroxyapatite (HA) via a single step melt extrusion additive manufacturing technique. Starting from the raw powder forms, the printed scaffolds were produced and then characterized for morphology, mechanical behavior and in vitro mineralization. MicroCT revealed the homogenous dispersion of ceramic particles in the PCL matrix. Also, SEM showed the ceramic particles on the surfaces of printed scaffolds. Furthermore, bioactivity assays confirmed the enhanced apatite deposit formation on composite scaffolds compared to PCL…
Towards 3D Multi-Layer Scaffolds for Periodontal Tissue Engineering Applications: Addressing Manufacturing and Architectural Challenges
Reduced periodontal support, deriving from chronic inflammatory conditions, such as periodontitis, is one of the main causes of tooth loss. The use of dental implants for the replacement of missing teeth has attracted growing interest as a standard procedure in clinical practice. However, adequate bone volume and soft tissue augmentation at the site of the implant are important prerequisites for successful implant positioning as well as proper functional and aesthetic reconstruction of patients. Three-dimensional (3D) scaffolds have greatly contributed to solve most of the challenges that traditional solutions (i.e., autografts, allografts and xenografts) posed. Nevertheless, mimicking the complex architecture and…
3D printed Sr-containing composite scaffolds: Effect of structural design and material formulation towards new strategies for bone tissue engineering
The use of composite materials, processed as 3D tissue-like scaffolds, has been widely investigated as a promising strategy for bone tissue engineering applications. Also, additive manufacturing technologies such as fused deposition modelling (FDM) have greatly contributed to the manufacture of patient-specific scaffolds with predefined pore structures and intricate geometries. However, conventional FDM techniques require the use of materials exclusively in the form of filaments, which in order to produce composite scaffolds lead to additional costs for the fabrication of precursor filaments as well as multi-step production methods. In this study, we propose the use of an advantageous extrusion-based printing technology,…