3D Bioplotter Research Papers

Displaying all papers about Tungsten Carbide (2 results)

Microstructure and properties of additively-manufactured WC-Co microlattices and WC-Cu composites

Acta Materialia 2021 Volume 221, Article 117420

Liquid ink-printing followed by sintering is used to fabricate WC-Co microlattices and cutting tools. The microstructure of WC-xCo (x=0.5-20 wt.%) is studied for a range of carbide-to-binder ratios and for various sintering temperatures. For 0.5≤Co≤5 wt.%, struts in microlattices exhibit residual porosity due to incomplete densification, even at the highest sintering temperature of 1650 °C. With 10 wt.% Co, fully dense lattice struts are achieved after sintering at 1450 °C for 1 h. For 1450-1650 °C sintering temperatures, the hardness of WC-xCo struts initially increases (due to increasing densification with increased Co) and then gradually decreases (due to an increase…

Complex-shaped, finely-featured ZrC/W composites via shape-preserving reactive melt infiltration of porous WC structures fabricated by 3D ink extrusion

Additive Manufacturing Letters 2021 Volume 1, Article 100018

Complex-shaped, finely-featured, ultra-high-melting ZrC/W composite structures were produced by coupling, for the first time, three-dimensional (3D) ink-extrusion printing with shape/size-preserving reactive melt infiltration (the Displacive Compensation of Porosity, DCP, process). Inks containing sub-micron WC powders were printed at ambient temperature into either fine-scale structures (sub-millimeter filaments) or into a larger-scale, finely-featured 3D structure (a centimeter-scale nozzle with a sub-millimeter-thick wall). After organic binder removal, the printed structures were sintered at 1650 °C for 1 h to achieve a porosity of 50%. The porous, rigid WC structures then underwent ambient pressure infiltration and reaction with Zr-Cu liquid at up to 1350…