A 3D-printed PCL/PEI/DNA bioactive scaffold for chemotherapy drug capture in vivo

International Journal of Biological Macromolecules 2023 Volume 236, Article 123942

Systemic chemotherapy after surgery is necessary to control tumor recurrence, but the severe side effects caused by chemotherapeutic drugs pose a great threat to patients’ health. In this study, we originally develop a porous scaffold used for chemotherapy drug capture by using 3D printing technology. The scaffold is mainly composed of poly (ε-caprolactone) (PCL) and polyetherimide (PEI) with a mass ratio of 5/1. Subsequently, the printed scaffold is modified with DNA through the strong electrostatic integration between DNA and PEI to endow the scaffold with the specific absorption to doxorubicin (DOX, a widely used chemotherapy drug). The results show that pore diameter has an important influence on DOX adsorption, and smaller pores will ensure a higher DOX absorption. In vitro, the printed scaffold can absorb about 45 % DOX. While in vivo, it remains a higher absorption ability to DOX when the scaffold is successfully implanted into the common jugular vein of rabbits. What’s more, the scaffold has good hemocompatibility and biocompatibility, indicating its safety for in vivo application. Taken together, the 3D-printed scaffold with excellent capture of chemotherapy drugs will play an important role in reducing the toxic side effects of chemotherapy drugs and improving the life quality of patients.