Coating of 3D printed PCL/TCP scaffolds using homogenized-fibrillated collagen
Background
Poly(3-caprolactone) (PCL)/β-tricalcium phosphate (β-TCP) composite scaffolds fabricated by three-dimensional (3D) printing are one of the common scaffolds for bone tissue regeneration. However, the main challenge of these 3D printed PCL/β-TCP scaffolds is the fact that many cells pass from porosities during in vitro cell seeding, leading to poor initial cell attachment. This study aimed to demonstrate the fabrication of a new collagen coating process for optimizing the hydrophilic property and cell-substrate interactions. This method may be used for coating collagen on any relevant biomedical constructs made of synthetic polymers to increase their biocompatibility and cell attachment.
Materials and methods
Porous composite scaffolds fabricated by 3D printing were coated with collagen by a novel method and compared to traditional methods. After plasma treatment, samples were inverted in a homogenized collagen solution, freeze-dried, stabilized by crosslinking, freeze-dried again, and fibrillated using a defined salt concentration. Samples were characterized by a 3D laser microscope, cytocompatibility assay, attenuated total reflectance Fourier-transform infrared (ATR-FTIR) spectroscopy, water absorption, protein absorption, and bioactivity assay.
Results
Homogenized collagen at pH= 7 resulted in a very uniform layer on the surface of scaffolds with significantly higher cell proliferation (p < 0.05). Collagen-coated scaffolds showed significantly higher water absorption, protein absorption, and bioactivity compared to non-coated samples (p < 0.05).
Conclusion
The results demonstrate that both the pH and collagen structure influence the coating of scaffolds, while the concentrations used in this study do not have a significant difference in this aspect. The combination of homogenization and fibrillization makes scaffolds more biocompatible and desirable for bone tissue engineering.