Effect of internal lattice structure on the flexural strength of 3D printed hierarchical porous ultra-high temperature ceramic (ZrB2)
3D printing of technical ceramics using direct ink writing (DIW) of multiphase colloidal inks has the unique ability to create structures with hierarchical features. To facilitate the application of 3D printed hierarchical porous ultra-high temperature ceramics (UHTCs), additional limiting factors such as strength and the effect of 3D printed internal lattice structure need to be better understood. This study reports on the strength dependence of common DIW print parameters including internal lattice structure shape, nozzle diameter and spacings between adjacent filaments. The present study applies Weibull statistics to the experimental array that considers macro features introduced through print parameters as flaw types, which shows strength of 3D printed hierarchical ZrB2 is highly dependent on the introduced 3D printed structure, size and the stressed volume. This work provides essential information that can be used in the initial stages of design when considering implementation of additively manufactured hierarchical porous UHTCs.