Hierarchical patterning via dynamic sacrificial printing of stimuli-responsive hydrogels

Biofabrication 2020 Volume 12, Number 3, Article 035007

Inspired by stimuli-tailored dynamic processes that spatiotemporally create structural and functional diversity in biology, a new hierarchical patterning strategy is proposed to induce the emergence of complex multidimensional structures via dynamic sacrificial printing of stimuli-responsive hydrogels. Using thermally responsive gelatin (Gel) and pH-responsive chitosan (Chit) as proof-of-concept materials, we demonstrate that the initially printed sacrificial material (Gel/Chit-H+ hydrogel with a single gelatin network) can be converted dynamically into non-sacrificial material (Gel/Chit-H+–Citr hydrogel with gelatin and an electrostatic citrate–chitosan dual network) under stimulus cues (citrate ions). Complex hierarchical structures and functions can be created by controlling either the printing patterns of citrate ink or the diffusion time of citrate ions into the Gel/Chit-H+ hydrogel. Specifically, mechanically anisotropic hydrogel film and cell patterning can be achieved via two-dimensional (2D) patterning; complex external and internal 3D structures can be fabricated in stimuli-responsive hydrogel and other hydrogels that are not stimuli-responsive under experimental conditions (also owing to the erasable properties of Gel/Chit-H+–Citr hydrogel) via 3D patterning; and an interconnected or segregated fluidic network can be constructed from the same initial 3D grid structure via 4D patterning. Our method is very simple, safe and generally reagentless, and the products/structures are often erasable, compatible and digestible, enabling advanced fabrication technologies (e.g. additive manufacturing) to be applied to a sustainable materials platform.