Novel Strategy to Accelerate Bone Regeneration of Calcium Phosphate Cement by Incorporating 3D Plotted Poly(lactic‐co‐glycolic acid) Network and Bioactive Wollastonite

Advanced Healthcare Materials 2019 Volume 8, Issue 9, Article 1801325

Inefficient bone regeneration of self‐hardening calcium phosphate cement (CPC) increases the demand for interconnected macropores and osteogenesis‐stimulated substances. It remains a challenge to fabricate porous CPC with interconnected macropores while maintaining its advantages, such as plasticity. Herein, pastes containing CPC and wollastonite (WS) are infiltrated into a 3D plotted poly(lactic‐co‐glycolic acid) (PLGA) network to fabricate plastic CPC‐based composite cement (PLGA/WS/CPC). The PLGA/WS/CPC recovers the plasticity of CPC after being heated above the glass transition temperature of PLGA. The presence of the 3D PLGA network significantly increases the flexibility of CPC in prophase and generates 3D interconnected macropores in situ upon its degradation. The addition of WS is helpful to improve the attachment, proliferation, and osteogenic differentiation of mouse bone marrow stromal cells in vitro. The in vivo experimental results indicate that PLGA/WS/CPC promotes rapid angiogenesis and bone formation. Therefore, the plastic CPC‐based composite cement with a 3D PLGA network and wollastonite shows an obviously improved efficiency for repairing bone defects and is expected to facilitate the wider application of CPC in the clinic.