Quantum dots-labeled polymeric scaffolds for in vivo tracking of degradation and tissue formation

Bioactive Materials 2022 Volume 16, Pages 285-292

The inevitable gap between in vitro and in vivo degradation rate of biomaterials has been a challenging factor in the optimal designing of scaffold’s degradation to be balanced with new tissue formation. To enable non-/minimum-invasive tracking of in vivo scaffold degradation, chemical modifications have been applied to label polymers with fluorescent dyes. However, the previous approaches may have limited expandability due to complicated synthesis processes. Here, we introduce a simple and efficient method to fluorescence labeling of polymeric scaffolds via blending with near-infrared (NIR) quantum dots (QDs), semiconductor nanocrystals with superior optical properties. QDs-labeled, 3D-printed PCL scaffolds showed promising efficiency and reliability in quantitative measurement of degradation using a custom-built fiber-optic imaging modality. Furthermore, QDs-PCL scaffolds showed neither cytotoxicity nor secondary labeling of adjacent cells. QDs-PCL scaffolds also supported the engineering of fibrous, cartilaginous, and osteogenic tissues from mesenchymal stem/progenitor cells (MSCs). In addition, QDs-PCL enabled a distinction between newly forming tissue and the remaining mass of scaffolds through multi-channel imaging. Thus, our findings suggest a simple and efficient QDs-labeling of PCL scaffolds and minimally invasive imaging modality that shows significant potential to enable in vivo tracking of scaffold degradation as well as new tissue formation.