Towards sustainable, direct printed, organic transistors with biocompatible copolymer gate dielectrics
We have investigated the potential of three dielectric materials to meet the future demands of green dielectrics: Polycaprolactone (PCL) thermoplastic, polyvinyl alcohol (PVA)-carrageenan (CAR) crosslinked biopolymer, and boron nitride nanotubes (BNNTs) as a nano additive in PVA. Metal–insulator–metal (MIM) capacitors and organic thin film transistors (OTFT) were built with bilayer dielectric stacks of PVA-CAR, PVA-PCL, and PVA-BNNT materials to examine their electrical properties. The PVA-CAR layer uses a cyclic freeze thaw process to crosslink PVA and CAR for superior mechanical and electrical properties to either material alone. The PVA-CAR MIM capacitors showed a dielectric constant of 23, which was found to be consistent with the extracted OTFT gate dielectric characteristics. Of the OTFT devices tested, PVA-CAR OTFT showed highest device currents at low applied biases and produced an ON/OFF ratio of 104–105, both values were highest amongst the tested gate dielectrics. This material is therefore extremely promising for green electronics. The PVA-PCL OTFT had very low leakage current and beneficial hydrophilic properties with comparable electrical properties to the commonly used organic material polytetrafluoroethylene. PVA-BNNT MIM capacitors showed a low dielectric constant of 0.7, and the high resistivity makes this a promising material for shielding or substrates in high frequency applications. All three materials have the potential to fulfil different niches in a sustainable electronics future.