3D Bioplotter Research Papers

Displaying all papers by B. Liu (5 results)

3D printing MOF nanozyme hydrogel with dual enzymatic activities and visualized glucose monitoring for diabetic wound healing

Chemical Engineering Journal 2023 Volume 471, Article 144649

Promoting rapid healing of diabetic wounds caused by hyperglycemia, bacterial infection, and chronic inflammation is a global challenge. To address this issue, we design and prepare a novel cerium-based MOF nanozyme hydrogel via 3D printing technology to provide a personalized hydrogel wound dressing. The hydrogel is unique in that cerium-based MOFs are grown into the hydrogel network, simplifying the printing process of MOF hydrogel. The prepared hydrogel exhibits specific catalytic activity to various oxygen free radicals and glucose concentration-dependent color changes due to the interconversion between different valence cerium ions. This feature allows for indirect monitoring of glucose content around…

Embedded Bioprinting of Breast Tumor Cells and Organoids Using Low-Concentration Collagen-Based Bioinks

Advanced Healthcare Materials 2023 Volume 12, Issue 26, Article 2300905

Bioinks for 3D bioprinting of tumor models should not only meet printability requirements but also accurately maintain and support phenotypes of tumor surrounding cells to recapitulate key tumor hallmarks. Collagen is a major extracellular matrix protein for solid tumors, but low viscosity of collagen solution has made 3D bioprinted cancer models challenging. This work produces embedded, bioprinted breast cancer cells and tumor organoid models using low-concentration collagen I based bioinks. The biocompatible and physically crosslinked silk fibroin hydrogel is used to generate the support bath for the embedded 3D printing. The composition of the collagen I based bioink is optimized…

Controllable fabrication of alginate/poly-L-ornithine polyelectrolyte complex hydrogel networks as therapeutic drug and cell carriers

Acta Biomaterialia 2022 Volume 138, Pages 182-192

Polyelectrolyte complex (PEC) hydrogels are advantageous as therapeutic agent and cell carriers. However, due to the weak nature of physical crosslinking, PEC swelling and cargo burst release are easily initiated. Also, most current cell-laden PEC hydrogels are limited to fibers and microcapsules with unfavorable dimensions and structures for practical implantations. To overcome these drawbacks, alginate (Alg)/poly-L-ornithine (PLO) PEC hydrogels are fabricated into microcapsules, fibers, and bulk scaffolds to explore their feasibility as drug and cell carriers. Stable Alg/PLO microcapsules with controllable shapes are obtained through aqueous electrospraying technique, which avoids osmotic shock and prolongs the release time. Model enzyme and…

Three-dimensional-printed calcium alginate/graphene oxide porous adsorbent with super-high lead ion adsorption ability in aqueous solution

Separation and Purification Technology 2023 Volume 326, Article 124757

Using three-dimensional (3D) printing technology, a 3D calcium alginate/graphene oxide (3D CA/GO) adsorbent, with a hierarchical macroporous structure, was successfully constructed. Owing to the optimized construction process, the 3D CA/GO showed an enhanced adsorption capacity (490.2 mg/g at pH = 3.0) for lead (Pb(II)) in aqueous solution, which was two times higher than reported in the literature). Meanwhile, the selective adsorption ratio of 3D CA/GO for Pb(II) reached 99.8% when positive ions occurred. In addition, after eight adsorption–desorption cycles, the adsorption capacity did not experience a significant decrease and the structure remained stable. Meanwhile, the adsorbed Pb(II) could be eluted…

Dynamic hyaluronic acid hydrogel with covalent linked gelatin as an anti-oxidative bioink for cartilage tissue engineering

Biofabrication 2021 Volume 14, Number 1, Article 014107

In the past decade, cartilage tissue engineering has arisen as a promising therapeutic option for degenerative joint diseases, such as osteoarthritis, in the hope of restoring the structure and physiological functions. Hydrogels are promising biomaterials for developing engineered scaffolds for cartilage regeneration. However, hydrogel-delivered mesenchymal stem cells or chondrocytes could be exposed to elevated levels of reactive oxygen species (ROS) in the inflammatory microenvironment after being implanted into injured joints, which may affect their phenotype and normal functions and thereby hinder the regeneration efficacy. To attenuate ROS induced side effects, a multifunctional hydrogel with an innate anti-oxidative ability was produced…