3D Bioplotter Research Papers
Influence of 3D Printing Parameters on the Mechanical Stability of PCL Scaffolds and the Proliferation Behavior of Bone Cells
Introduction The use of scaffolds in tissue engineering is becoming increasingly important as solutions need to be found for the problem of preserving human tissue, such as bone or cartilage. In this work, scaffolds were printed from the biomaterial known as polycaprolactone (PCL) on a 3D Bioplotter. Both the external and internal geometry were varied to investigate their influence on mechanical stability and biocompatibility. Materials and Methods: An Envisiontec 3D Bioplotter was used to fabricate the scaffolds. First, square scaffolds were printed with variations in the strand width and strand spacing. Then, the filling structure was varied: either lines, waves,…
The Mineralization of Various 3D-Printed PCL Composites
In this project, different calcification methods for collagen and collagen coatings were compared in terms of their applicability for 3D printing and production of collagen-coated scaffolds. For this purpose, scaffolds were printed from polycaprolactone PCL using the EnvisionTec 3D Bioplotter and then coated with collagen. Four different coating methods were then applied: hydroxyapatite (HA) powder directly in the collagen coating, incubation in 10× SBF, coating with alkaline phosphatase (ALP), and coating with poly-L-aspartic acid. The results were compared by ESEM, µCT, TEM, and EDX. HA directly in the collagen solution resulted in a pH change and thus an increase in…
Alternative Geometries for 3D Bioprinting of Calcium Phosphate Cement as Bone Substitute
In the literature, many studies have described the 3D printing of ceramic-based scaffolds (e.g., printing with calcium phosphate cement) in the form of linear structures with layer rotations of 90°, although no right angles can be found in the human body. Therefore, this work focuses on the adaptation of biological shapes, including a layer rotation of only 1°. Sample shapes were printed with calcium phosphate cement using a 3D Bioplotter from EnvisionTec. Both straight and wavy spokes were printed in a round structure with 12 layers. Depending on the strand diameter (200 and 250 µm needle inner diameter) and strand…