3D Bioplotter Research Papers
Development of hybrid 3D-printed structure with aligned drug-loaded fibres using in-situ custom designed templates
Fibre alignment technology is crucial in various emerging applications, such as drug delivery systems, tissue engineering, and scaffold fabrication. However, conventional methods have limitations when it comes to incorporating aligned fibres into 3D printed structures in situ. This research demonstrates the use of custom-designed templates made with conductive ink to control the alignment of drug-loaded polymer fibres on a 3D printed microscale structure. Three different geometries were designed, and the effects of the template on fibre diameter and pattern were investigated. The hybrid structure demonstrated successful control of aligned fibres on printed structures using grounded conductive ink geometric electrodes, as…
Rapid Customization and Manipulation Mechanism of Micro-Droplet Chip for 3D Cell Culture
A full PDMS micro-droplet chip for 3D cell culture was prepared by using SLA light-curing 3D printing technology. This technology can quickly customize various chips required for experiments, saving time and capital costs for experiments. Moreover, an injection molding method was used to prepare the full PDMS chip, and the convex mold was prepared by light-curing 3D printing technology. Compared with the traditional preparation process of micro-droplet chips, the use of 3D printing technology to prepare micro-droplet chips can save manufacturing and time costs. The different ratios of PDMS substrate and cover sheet and the material for making the convex…
Three-dimensional printing of click functionalized, peptide patterned scaffolds for osteochondral tissue engineering
Osteochondral repair remains a significant clinical challenge due to the multiple tissue phenotypes and complex biochemical milieu in the osteochondral unit. To repair osteochondral defects, it is necessary to mimic the gradation between bone and cartilage, which requires spatial patterning of multiple tissue-specific cues. To address this need, we have developed a facile system for the conjugation and patterning of tissue-specific peptides by melt extrusion of peptide-functionalized poly(ε-caprolactone) (PCL). In this study, alkyne-terminated PCL was conjugated to tissue-specific peptides via a mild, aqueous, and Ru(II)-catalyzed click reaction. The PCL-peptide composites were then 3D printed by multimaterial segmented printing to generate…