3D Bioplotter Research Papers

Displaying all papers about Chondrocytes (39 results)

A modular hydrogel bioink containing microsphere-embedded chondrocytes for 3D-printed multiscale composite scaffolds for cartilage repair

iScience 2023 Volume 26, Issue 8, Article 107349,

Articular cartilage tissue engineering is being considered an alternative treatment strategy for promoting cartilage damage repair. Herein, we proposed a modular hydrogel-based bioink containing microsphere-embedded chondrocytes for 3D printing multiscale scaffolds integrating the micro and macro environment of the native articular cartilage. Gelatin methacryloyl (GelMA)/alginate microsphere was prepared by a microfluidic approach, and the chondrocytes embedded in the microspheres remained viable after being frozen and resuscitated. The modular hydrogel bioink could be printed via the gel-in-gel 3D bioprinting strategy for fabricating the multiscale hydrogel-based scaffolds. Meanwhile, the cells cultured in the scaffolds showed good proliferation and differentiation. Furthermore, we also found that…

Engineered biomechanical microenvironment of articular chondrocytes based on heterogeneous GelMA hydrogel composites and dynamic mechanical compression

Biomaterials Advances 2023 Volume 153, Article 213567

Tissue-engineered articular cartilage constructs are currently not able to equal native tissues in terms of mechanical and biological properties. A major cause lies in the deficiency in engineering the biomechanical microenvironment (BMME) of articular chondrocytes. In this work, to engineer the BMME of articular chondrocytes, heterogeneous hydrogel structures of gelatin methacrylated (GelMA) containing differential-stiffness domains were first fabricated, and then periodic dynamic mechanical stimulations were applied to the hydrogel structures. The chondrocyte phenotype of ATDC5 cells was enhanced as the spatial differentiation in stiffness was increased in the hydrogel structures and was further strengthened by dynamic mechanical stimulation. It was…

Reinforcement of Hydrogels with a 3D-Printed Polycaprolactone (PCL) Structure Enhances Cell Numbers and Cartilage ECM Production under Compression

Journal of Functional Biomaterials 2023 Volume 14, Issue 6, Article 313

Hydrogels show promise in cartilage tissue engineering (CTE) by supporting chondrocytes and maintaining their phenotype and extracellular matrix (ECM) production. Under prolonged mechanical forces, however, hydrogels can be structurally unstable, leading to cell and ECM loss. Furthermore, long periods of mechanical loading might alter the production of cartilage ECM molecules, including glycosaminoglycans (GAGs) and collagen type 2 (Col2), specifically with the negative effect of stimulating fibrocartilage, typified by collagen type 1 (Col1) secretion. Reinforcing hydrogels with 3D-printed Polycaprolactone (PCL) structures offer a solution to enhance the structural integrity and mechanical response of impregnated chondrocytes. This study aimed to assess the…

BC enhanced photocurable hydrogel based on 3D bioprinting for nasal cartilage repair

International Journal of Polymeric Materials and Polymeric Biomaterials 2023 Volume 72, Issue 9, Pages 702-713

The repair of nasal cartilage lesions and defects is still a difficult problem in nasal surgery, and nasal cartilage tissue engineering will be an effective way to solve this problem. Hydrogel has excellent application potential in tissue engineering. In order to produce a 3D printable scaffold for cartilage regeneration, we prepared gelatin methacryloyl (GelMA)/hyaluronic acid methacryloyl (HAMA)/bacterial cellulose (BC) composite hydrogel. The composite hydrogel was characterized by swelling, mechanical properties, and printing performance test. Compared with GelMA/HAMA hydrogel, the addition of BC not only significantly enhanced the mechanical properties of the hydrogels, but also improved the printing fidelity. At the…

Chondrocyte spheroid-laden microporous hydrogel-based 3D bioprinting for cartilage regeneration

International Journal of Bioprinting 2023 Article 0161

Three-dimensional (3D) bioprinting has brought new promising strategies for the regeneration of cartilage with specific shapes. In cartilage bioprinting, chondrocyte-laden hydrogels are the most commonly used bioinks. However, the dispersion of cells and the dense texture of the hydrogel in the conventional bioink may limit cell–cell/ cell–extracellular matrix (ECM) interactions, counting against cartilage regeneration and maturation. To address this issue, in this study, we developed a functional bioink for cartilage bioprinting based on chondrocyte spheroids (CSs) and microporous hydrogels, in which CSs as multicellular aggregates can provide extensive cell– cell/cell–ECM interactions to mimic the natural cartilage microenvironment, and microporous hydrogels…

A self-healing nanocomposite double network bacterial nanocellulose/gelatin hydrogel for three dimensional printing

Carbohydrate Polymers 2023 Volume 313, Article 120879

Extrusion-based three-dimensional (3D) printing of gelatin is important for additive manufactured tissue engineering scaffolds, but gelatin’s thermal instability has remained an ongoing challenge. The gelatin tends to suddenly collapse at mild temperatures, which is a significant limitation for using it at physiological temperature of 37 °C. Hence, fabrication of a thermo-processable gelatin hydrogel adapted for extrusion-based additive manufacturing is still a challenge. To achieve this, a self-healing nanocomposite double-network (ncDN) gelatin hydrogel was fabricated with high thermo-processability, shear-thinning, mechanical strength, self-healing, self-recovery, and biocompatibility. To do this, amino group-rich gelatin was first created by combining gelatin with carboxyl methyl chitosan.…

Bacterial nanocellulose-reinforced gelatin methacryloyl hydrogel enhances biomechanical property and glycosaminoglycan content of 3D-bioprinted cartilage

International Journal of Bioprinting 2023 Volume 9, Issue 1, Article 631

Tissue-engineered ear cartilage scaffold based on three-dimensional (3D) bioprinting technology presents a new strategy for ear reconstruction in individuals with microtia. Natural hydrogel is a promising material due to its excellent biocompatibility and low immunogenicity. However, insufficient mechanical property required for cartilage is one of the major issues pending to be solved. In this study, the gelatin methacryloyl (GelMA) hydrogel reinforced with bacterial nanocellulose (BNC) was developed to enhance the biomechanical properties and printability of the hydrogel. The results revealed that the addition of 0.375% BNC significantly increased the mechanical properties of the hydrogel and promoted cell migration in the…

Fabrication of chitosan/alginate/hydroxyapatite hybrid scaffolds using 3D printing and impregnating techniques for potential cartilage regeneration

International Journal of Biological Macromolecules 2022 Volume 204, Pages 62-75

Three-dimensional (3D) printed hydrogel scaffolds enhanced with ceramics have shown potential applications for cartilage regeneration, but leaving biological and mechanical properties to be desired. This paper presents our study on the development of chitosan /alginate scaffolds with nano hydroxyapatite (nHA) by combining 3D printing and impregnating techniques, forming a hybrid, yet novel, structure of scaffolds for potential cartilage regeneration. First, we incorporated nHA into chitosan scaffold printing and studied the printability by examining the difference between the printed scaffolds and their designs. Then, we impregnated alginate with nHA into the printed chitosan scaffolds to forming a hybrid structure of scaffolds;…

Rapid Customization and Manipulation Mechanism of Micro-Droplet Chip for 3D Cell Culture

Micromachines 2022 Volume 13, Issue 12, Article 2050

A full PDMS micro-droplet chip for 3D cell culture was prepared by using SLA light-curing 3D printing technology. This technology can quickly customize various chips required for experiments, saving time and capital costs for experiments. Moreover, an injection molding method was used to prepare the full PDMS chip, and the convex mold was prepared by light-curing 3D printing technology. Compared with the traditional preparation process of micro-droplet chips, the use of 3D printing technology to prepare micro-droplet chips can save manufacturing and time costs. The different ratios of PDMS substrate and cover sheet and the material for making the convex…

Bioprinting and regeneration of auricular cartilage using a bioactive bioink based on microporous photocrosslinkable acellular cartilage matrix

Bioactive Materials 2022 Volume 16, Pages 66-81

Tissue engineering provides a promising strategy for auricular reconstruction. Although the first international clinical breakthrough of tissue-engineered auricular reconstruction has been realized based on polymer scaffolds, this approach has not been recognized as a clinically available treatment because of its unsatisfactory clinical efficacy. This is mainly since reconstruction constructs easily cause inflammation and deformation. In this study, we present a novel strategy for the development of biological auricle equivalents with precise shapes, low immunogenicity, and excellent mechanics using auricular chondrocytes and a bioactive bioink based on biomimetic microporous methacrylate-modified acellular cartilage matrix (ACMMA) with the assistance of gelatin methacrylate (GelMA),…

3D Printing and Performance Study of Porous Artificial Bone Based on HA-ZrO2-PVA Composites

Materials 2023 Volume 16, Issue 3, Article 1107

An ideal artificial bone implant should have similar mechanical properties and biocompatibility to natural bone, as well as an internal structure that facilitates stomatal penetration. In this work, 3D printing was used to fabricate and investigate artificial bone composites based on HA-ZrO2-PVA. The composites were proportionally configured using zirconia (ZrO2), hydroxyapatite (HA) and polyvinyl alcohol (PVA), where the ZrO2 played a toughening role and PVA solution served as a binder. In order to obtain the optimal 3D printing process parameters for the composites, a theoretical model of the extrusion process of the composites was first established, followed by the optimization…

Freeze-printing of pectin/alginate scaffolds with high resolution, overhang structures and interconnected porous network

Additive Manufacturing 2021 Volume 46, Article 102120

We report herein the fabrication of a pectin-based scaffold (6 wt% pectin, 3 wt% alginate) with high resolution (small-diameter rods), small pores, and interconnected porosity using a low temperature 3D printing process known as freeze-printing. The ability to successfully print natural polymers has been a long-standing challenge in the field of additive manufacturing of polymeric tissue scaffolds. This is due to the slow evaporation rate of the aqueous solvent, which leads to unstable structures. This problem has been addressed by utilizing the fast solidification rate of the freeze-printing process. Scaffolds with a hgresolution (rod-diameter of 83 ± 14 µm), small…

Bioprinting of Chondrocyte Stem Cell Co-Cultures for Auricular Cartilage Regeneration

ACS Omega 2022 Volume 7, Issue 7, Pages 5908–5920

Advances in 3D bioprinting allows not only controlled deposition of cells or cell-laden hydrogels but also flexibility in creating constructs that match the anatomical features of the patient. This is especially the case for reconstructing the pinna (ear), which is a large feature of the face and made from elastic cartilage that primarily relies on diffusion for nutrient transfer. The selection of cell lines for reconstructing this cartilage becomes a crucial step in clinical translation. Chondrocytes and mesenchymal stem cells are both studied extensively in the area of cartilage regeneration as they are capable of producing cartilage in vitro. However,…

Hybrid Printing Using Cellulose Nanocrystals Reinforced GelMA/HAMA Hydrogels for Improved Structural Integration

Advanced Healthcare Materials 2020 Volume 9, Issue 24, Article 2001410

3D printing of soft-tissue like cytocompatible single material constructs with appropriate mechanical properties remains a challenge. Hybrid printing technology provides an attractive alternative as it combines a cell-free ink for providing mechanical support with a bioink for housing embedded cells. Several hybrid printed structures have been developed, utilizing thermoplastic polymers such as polycaprolactone as structural support. These thermoplastics demonstrated limited structural integration with the cell-laden components, and this may compromise the overall performance. In this work, a hybrid printing platform is presented using two distinct hydrogel inks that share the same photo-crosslinking chemistry to enable simple fabrication and seamless structural…

Extrusion-based printing of chitosan scaffolds and their in vitro characterization for cartilage tissue engineering

International Journal of Biological Macromolecules 2020 Volume 164, Pages 3179-3192

Researchers have looked to cartilage tissue engineering to address the lack of cartilage regenerative capability related to cartilage disease/trauma. For this, a promising approach is extrusion-based three-dimensional (3D) printing technique to deliver cells, biomaterials, and growth factors within a scaffold to the injured site. This paper evaluates the printability of chitosan scaffolds for a cartilage tissue engineering, with a focus on identifying the influence of drying technique implemented before crosslinking on the improvement of chitosan printability. First, the printability of chitosan with concentrations of 8%, 10%, and 12% (w/v) was evaluated and 10% chitosan was selected for further studies. Then,…

Cell Bioprinting: The 3D-Bioplotter™ Case

Materials 2019 Volume 12, Issue 23, Article 4005

The classic cell culture involves the use of support in two dimensions, such as a well plate or a Petri dish, that allows the culture of different types of cells. However, this technique does not mimic the natural microenvironment where the cells are exposed to. To solve that, three-dimensional bioprinting techniques were implemented, which involves the use of biopolymers and/or synthetic materials and cells. Because of a lack of information between data sources, the objective of this review paper is, to sum up, all the available information on the topic of bioprinting and to help researchers with the problematics with…

Design of a new 3D‐printed joint plug

Asia‐Pacific Journal of Chemical Engineering 2019 Volume 14, Issue 6, Article e2360

This paper introduces a kit of parts as a novel three‐dimensional (3D)–printed joint plug, in which each of the parts function cooperatively to treat cartilage damage in joints of the human body (e.g., hips, wrists, elbow, knee, and ankle). Three required and one optional parts are involved in this plug. The first part is a 3D‐printed hard scaffold (bone portion) to accommodate bone cells, and the second is a 3D‐printed soft scaffold (cartilage portion) overlying the bone portion to accommodate chondrocytes. The third part of joint plug is a permeable membrane, termed film, to cover the entire plug to provide…

Homogeneous hydroxyapatite/alginate composite hydrogel promotes calcified cartilage matrix deposition with potential for three-dimensional bioprinting

Biofabrication 2019 Volume 11, Issue 1, Article 015015

Calcified cartilage regeneration plays an important role in successful osteochondral repair, since it provides a biological and mechanical transition from the unmineralized cartilage at the articulating surface to the underlying mineralized bone. To biomimic native calcified cartilage in engineered constructs, here we test the hypothesis that hydroxyapatite (HAP) stimulates chondrocytes to secrete the characteristic matrix of calcified cartilage. Sodium citrate (SC) was added as a dispersant of HAP within alginate (ALG), and homogeneous dispersal of HAP within ALG hydrogel was confirmed using sedimentation tests, electron microscopy, and energy dispersive spectroscopy. To examine the biological performance of ALG/HAP composites, chondrocyte survival…

Reversible physical crosslinking strategy with optimal temperature for 3D bioprinting of human chondrocyte-laden gelatin methacryloyl bioink

Journal of Biomaterials Applications 2018 Volume 33, Issue 5, Pages 609-618

Gelatin methacryloyl is a promising material in tissue engineering and has been widely studied in three-dimensional bioprinting. Although gelatin methacryloyl possesses excellent biocompatibility and tunable mechanical properties, its poor printability/processability has hindered its further applications. In this study, we report a reversible physical crosslinking strategy for precise deposition of human chondrocyte-laden gelatin methacryloyl bioink at low concentration without any sacrificial material by using extrusive three-dimensional bioprinting. The precise printing temperature was determined by the rheological properties of gelatin methacryloyl with temperature. Ten percent (w/v) gelatin methacryloyl was chosen as the printing formula due to highest biocompatibility in three-dimensional cell cultures…

Elastic polyurethane bearing pendant TGF-β1 affinity peptide for potential tissue engineering applications

Materials Science and Engineering: C 2017 Volume 83, Pages 67-77

Highlights * An elastic degradable polyurethane (PU) bearing pendent HSNGLPL peptide for TGF-β1 affinity binding mimics the extracellular matrix function to retain and release growth factors. * The pendant peptide sequence presented a high affinity for TGF-β1 retaining, even when the surface was pre-coated with other proteins. * The synthesized PU shows good extrusion processing ability and can be printed into 3D scaffolds with designed porous structures. * The released TGF-β1 from surface conjugating was tested by differentiation guiding experiments of ATDC5 cells in vitro and the regeneration of the surrounding tissue after implanting in vivo.

Traditional invasive and synchrotron-based non-invasive assessments of 3D-printed hybrid cartilage constructs

Tissue Engineering Part C: Methods 2017 Volume 23, Issue 3, Pages 156-168

Three-dimensional (3D)-printed constructs made of polycaprolactone (PCL) and chondrocyte-impregnated alginate hydrogel (hybrid cartilage constructs) mimic the biphasic nature of articular cartilage, offering promise for cartilage tissue engineering (CTE) applications. However, the regulatory pathway for medical device development requires validation of such constructs through in vitro bench tests and in vivo preclinical examinations premarket approval. Furthermore, non-invasive imaging techniques are required for effective evaluation of the progress of these cartilage constructs, especially when implanted in animal models or human subjects. However, characterization of the individual components of the hybrid cartilage constructs and their associated time-dependent structural changes by currently available non-invasive…

3D Printing of Porous Cell-Laden Hydrogel Constructs for Potential Applications in Cartilage Tissue Engineering

ACS Biomaterials Science and Engineering 2016 Volume 2, Issue 7, Pages 1200–1210

Hydrogels are particularly attractive as scaffolding materials for cartilage tissue engineering because their high water content closely mimics the native extracellular matrix (ECM). Hydrogels can also provide a three-dimensional (3D) microenvironment for homogeneously suspended cells that retains their rounded morphology and thus facilitates chondrogenesis in cartilage tissue engineering. However, fabricating hydrogel scaffolds or cell-laden hydrogel constructs with a predesigned external shape and internal structure that does not collapse remains challenging because of the low viscosity and high water content of hydrogel precursors. Here, we present a study on the fabrication of (cell-laden) alginate hydrogel constructs using a 3D bioplotting system…

Using synchrotron radiation inline phase-contrast imaging computed tomography to visualize three-dimensional printed hybrid constructs for cartilage tissue engineering

Journal of Synchrotron Radiation 2016 Volume 23, Issue 3, Pages 802-812

Synchrotron radiation inline phase-contrast imaging combined with computed tomography (SR-inline-PCI-CT) offers great potential for non-invasive characterization and three-dimensional visualization of fine features in weakly absorbing materials and tissues. For cartilage tissue engineering, the biomaterials and any associated cartilage extracellular matrix (ECM) that is secreted over time are difficult to image using conventional absorption-based imaging techniques. For example, three-dimensional printed polycaprolactone (PCL)/alginate/cell hybrid constructs have low, but different, refractive indices and thicknesses. This paper presents a study on the optimization and utilization of inline-PCI-CT for visualizing the components of three-dimensional printed PCL/alginate/cell hybrid constructs for cartilage tissue engineering. First, histological analysis…

Analyzing biological performance of 3D-printed, cell-impregnated hybrid constructs for cartilage tissue engineering

Tissue Engineering Part C: Methods 2016 Volume 22, Issue 3, Pages 173-188

Three-dimensional (3D) bioprinting of hybrid constructs is a promising biofabrication method for cartilage tissue engineering because a synthetic polymer framework and cell-impregnated hydrogel provide structural and biological features of cartilage, respectively. During bioprinting, impregnated cells may be subjected to high temperatures (caused by the adjacent melted polymer) and process-induced mechanical forces, potentially compromising cell function. This study addresses these biofabrication issues, evaluating the heat distribution of printed polycaprolactone (PCL) strands and the rheological property and structural stability of alginate hydrogels at various temperatures and concentrations. The biocompatibility of parameters from these studies was tested by culturing 3D hybrid constructs bioprinted…

The Application of Three-Dimensional Printing in Animal Model of Augmentation Rhinoplasty

Annals of Biomedical Engineering 2015 Volume 43, Issue 9, Pages 2153-2162

The role of three-dimensional (3D) printing has expanded in diverse areas in medicine. As plastic surgery needs to fulfill the different demands from diverse individuals, the applications of tailored 3D printing will become indispensable. In this study, we evaluated the feasibility of using 3D-printed polycaprolactone (PCL) scaffold seeded with fibrin/chondrocytes as a new dorsal augmentation material for rhinoplasty. The construct was surgically implanted on the nasal dorsum in the subperiosteal plane of six rabbits. The implants were harvested 4 and 12 weeks after implantation and evaluated by gross morphological assessment, radiographic imaging, and histologic examination. The initial shape of the…

In vivo screening of extracellular matrix components produced under multiple experimental conditions implanted in one animal

Integrative Biology 2013 Volume 5, Pages 889-898

Animal experiments help to progress and ensure safety of an increasing number of novel therapies, drug development and chemicals. Unfortunately, these also lead to major ethical concerns, costs and limited experimental capacity. We foresee a coercion of all these issues by implantation of well systems directly into vertebrate animals. Here, we used rapid prototyping to create wells with biomaterials to create a three-dimensional (3D) well-system that can be used in vitro and in vivo. First, the well sizes and numbers were adjusted for 3D cell culture and in vitro screening of molecules. Then, the functionality of the wells was evaluated…

The effect of scaffold-cell entrapment capacity and physico-chemical properties on cartilage regeneration

Biomaterials 2013 Volume 34, Issue 17, Pages 4259–4265

An important tenet in designing scaffolds for regenerative medicine consists in mimicking the dynamic mechanical properties of the tissues to be replaced to facilitate patient rehabilitation and restore daily activities. In addition, it is important to determine the contribution of the forming tissue to the mechanical properties of the scaffold during culture to optimize the pore network architecture. Depending on the biomaterial and scaffold fabrication technology, matching the scaffolds mechanical properties to articular cartilage can compromise the porosity, which hampers tissue formation. Here, we show that scaffolds with controlled and interconnected pore volume and matching articular cartilage dynamic mechanical properties,…

A micro-scale surface-structured PCL scaffold fabricated by a 3D plotter and a chemical blowing agent

Journal of Biomaterials Science, Polymer Edition 2010 Volume 21, Issue 2, Pages 159-170

To study cell responses, polymeric scaffolds with a controllable pore size and porosity have been fabricated using rapid-prototyping methods. However, the scaffolds fabricated by rapid prototyping have very smooth surfaces, which tend to discourage initial cell attachment. Initial cell attachment, migration, differentiation and proliferation are strongly dependent on the chemical and physical characteristics of the scaffold surface. In this study, we propose a three-dimensional (3D) plotting method supplemented with a chemical blowing agent to produce a surface-modified 3D scaffold in which the surface is inscribed with nano- and micro-sized pores. The chemically-blown 3D polymeric scaffold exhibited positive qualities, including the…

Fabrication and characterization of 3D scaffold using 3D plotting system

Chinese Science Bulletin 2010 Volume 55, Issue 1, Pages 94-98

In this paper, we design and fabricate a 3D scaffold using rapid prototyping (RP) technology for tissue engineering. The scaffold should have a three-dimensional interconnected pore network. We fabricate a polycaprolactone (PCL) scaffold with interconnecting pores and uniform porosity for cell ingrowth using a 3D plotting system. In order to keep the three dimensional shape under mechanical loading while implanted, we design an oscillating nozzle system to increase elastic modulus and yield strength of PCL strand. We characterize the influence of pore geometry, compressive modulus of the scaffold, elastic modulus and yield strength of the strand using SEM, dynamical mechanical…

3D polycaprolactone scaffolds with controlled pore structure using a rapid prototyping system

Journal of Materials Science: Materials in Medicine 2009 Volume 20, Issue 1, Pages 229-234

Designing a three-dimensional (3-D) ideal scaffold has been one of the main goals in biomaterials and tissue engineering, and various mechanical techniques have been applied to fabricate biomedical scaffolds used for soft and hard tissue regeneration. Scaffolds should be biodegradable and biocompatible, provide temporary support for cell growth to allow cell adhesion, and consist of a defined structure that can be formed into customized shapes by a computer-aided design system. This versatility in preparing scaffolds gives us the opportunity to use rapid prototyping devices to fabricate polymeric scaffolds. In this study, we fabricated polycaprolactone scaffolds with interconnecting pores using a…

Three-Dimensional Plotter Technology for Fabricating Polymeric Scaffolds with Micro-grooved Surfaces

Journal of Biomaterials Science, Polymer Edition 2009 Volume 20, Issue 14, Pages 2089-2101
J. Son G. H. Kim

Various mechanical techniques have been used to fabricate biomedical scaffolds, including rapid prototyping (RP) devices that operate from CAD files of the target feature information. The three-dimensional (3-D) bio-plotter is one RP system that can produce design-based scaffolds with good mechanical properties for mimicking cartilage and bones. However, the scaffolds fabricated by RP have very smooth surfaces, which tend to discourage initial cell attachment. Initial cell attachment, migration, differentiation and proliferation are strongly dependent on the chemical and physical characteristics of the scaffold surface. In this study, we propose a new 3-D plotting method supplemented with a piezoelectric system for…

Design and Dynamic Culture of 3D Scaffolds for Cartilage Tissue Engineering

Journal of Biomaterials Applications 2009

Engineered scaffolds for tissue-engineering should be designed to match the stiffness and strength of healthy tissues while maintaining an interconnected pore network and a reasonable porosity. In this work, we have used 3D-ploting technique to produce poly-LLactide (PLLA) macroporous scaffolds with two different pore sizes. The ability of these macroporous scaffolds to support chondrocyte attachment and viability were compared under static and dynamic loading in vitro. Moreover, the 3D-plotting technique was combined with porogen-leaching, leading to micro/macroporous scaffolds, so as to examine the effect of microporosity on the level of cell attachment and viability under similar loading condition. Canine chondrocytes…

Rapid prototyping of anatomically shaped, tissue-engineered implants for restoring congruent articulating surfaces in small joints

Cell Proliferation 2009 Volume 42, Issue 4, pages 485-497

Background:  Preliminary studies investigated advanced scaffold design and tissue engineering approaches towards restoring congruent articulating surfaces in small joints. Materials and methods:  Anatomical femoral and tibial cartilage constructs, fabricated by three-dimensional fibre deposition (3DF) or compression moulding/particulate leaching (CM), were evaluated in vitro and in vivo in an autologous rabbit model. Effects of scaffold pore architecture on rabbit chondrocyte differentiation and mechanical properties were evaluated following in vitro culture and subcutaneous implantation in nude mice. After femoral and tibial osteotomy and autologous implantation of tissue-engineered constructs in rabbit knee joints, implant fixation and joint articulation were evaluated. Results:  Rapid prototyping…

Cartilage Tissue Engineering Using Smart Scaffold Design & Advanced Bio Manufacturing

Orthopaedic Proceedings 2009 91-B:SUPP_II, Pages 343-343

Articular cartilage has a limited regenerative capacity. Tissue engineering strategies adopting seeding and differentiation of individual chondrocytes on porous 3D scaffolds of clinically relevant size remains a considerable challenge. A well documented method to produce small samples of differentiated cartilage tissue in vitro is via micro-mass (pellet) culture, whereby, high concentrations of chondrocytes coalesce to form. a spherical tissue pellet. However, pellet culture techniques are not applied clinically as it is only possible to produce small amounts of tissue (1–2mm). The aims of this study were to develop a method for mass-production of pellets, and investigate whether an alternative “pellet…

Intra-scaffold continuous medium flow combines chondrocyte seeding and culture systems for tissue engineered trachea construction

Interactive CardioVasc Thoracic Surgery 2009 Volume 8, Issue 1, Pages 27-30

In this study we tested the possibility of seeding chondrocytes into poly (ethylene glycol)-terephthalate-poly (butylene terephthalate) PEOT/PBT scaffold through an intra-scaffold medium flow and the impact of this continuous medium flow on subsequent chondrocyte-scaffold culture. Eight cubic PEOT/PBT co-polymers (1 cm3) were assigned into two groups. In the semi-dynamic seeding group a continuous medium flow was created inside the scaffolds by a pump system. Around six million chondrocytes were harvested each day, suspended in 1 ml medium and delivered onto the scaffold through the perfusion for a sequential five days. Traditional chondrocytes directly seeding and static culture method was performed…

Hybrid Process for Fabricating 3D Hierarchical Scaffolds Combining Rapid Prototyping and Electrospinning

Macromolecular Rapid Communications 2008 Volume29, Issue19, Pages 1577-1581

An ideal scaffold should have good mechanical properties and provide a biologically functional implant site. A rapid prototyping system has been introduced as a good method of fabricating 3D scaffolds that mimic the structure in the human body. However, the scaffolds have strands that are too smooth and a pore size that is too large relative to the seeded cells and present unfavorable conditions for initial cell attachment. To overcome these problems, we propose a hybrid technology combining a 3D rapid prototyping system and an electrospinning process to produce a hierarchical 3D biomedical scaffold. The resulting structure consists of alternating…

3D Fiber-Deposited Electrospun Integrated Scaffolds Enhance Cartilage Tissue Formation

Advanced Functional Materials 2008 Volume 18, Issue 1, Pages 53-60

Despite the periodical and completely interconnected pore network that characterizes rapid prototyped scaffolds, cell seeding efficiency remains still a critical factor for optimal tissue regeneration. This can be mainly attributed to the current resolution limits in pore size. We present here novel three-dimensional (3D) scaffolds fabricated by combining 3D fiber deposition (3DF) and electrospinning (ESP). Scaffolds consisted of integrated 3DF periodical macrofiber and random ESP microfiber networks (3DFESP). The 3DF scaffold provides structural integrity and mechanical properties, while the ESP network works as a “sieving” and cell entrapment system and offers?at the same time?cues at the extracellular matrix (ECM) scale.…

Anatomical 3D fiber – deposited scaffolds for tissue engineering: designing a neotrachea

Tissue Engineering 2007 Volume: 13 Issue 10, Pages 2483-2493

The advantage of using anatomically shaped scaffolds as compared to modeled designs was investigated and assessed in terms of cartilage formation in an artificial tracheal construct. Scaffolds were rapid prototyped with a technique named three-dimensional fiber deposition (3DF). Anatomical scaffolds were fabricated from a patient-derived computerized tomography dataset, and compared to cylindrical and toroidal tubular scaffolds. Lewis rat tracheal chondrocytes were seeded on 3DF scaffolds and cultured for 21 days. The 3-(4,5-dimethylthiazol-2yl)-2,5-dyphenyltetrazolium bromide (MTT) and sulfated glycosaminoglycan (GAG) assays were performed to measure the relative number of cells and the extracellular matrix (ECM) formed. After 3 weeks of culture, the…

Polymer hollow fiber three-dimensional matrices with controllable cavity and shell thickness

Biomaterials 2006 Volume 27, Issue 35, Pages 5918-5926

Hollow fibers find useful applications in different disciplines like fluid transport and purification, optical guidance, and composite reinforcement. In tissue engineering, they can be used to direct tissue in-growth or to serve as drug delivery depots. The fabrication techniques currently available, however, do not allow to simultaneously organize them into three-dimensional (3D) matrices, thus adding further functionality to approach more complicated or hierarchical structures. We report here the development of a novel technology to fabricate hollow fibers with controllable hollow cavity diameter and shell thickness. By exploiting viscous encapsulation, a rheological phenomenon often undesired in molten polymeric blends flowing through…