3D Bioplotter Research Papers

Displaying all papers about hASC (16 results)

Hyaluronic acid based next generation bioink for 3D bioprinting of human stem cell derived corneal stromal model with innervation

Biofabrication 2023 Volume 15, Number 1, Article 015020

Corneal transplantation remains gold standard for the treatment of severe cornea diseases, however, scarcity of donor cornea is a serious bottleneck. 3D bioprinting holds tremendous potential for cornea tissue engineering (TE). One of the key technological challenges is to design bioink compositions with ideal printability and cytocompatibility. Photo-crosslinking and ionic crosslinking are often used for the stabilization of 3D bioprinted structures, which can possess limitations on biological functionality of the printed cells. Here, we developed a hyaluronic acid-based dopamine containing bioink using hydrazone crosslinking chemistry for the 3D bioprinting of corneal equivalents. First, the shear thinning property, viscosity, and mechanical…

Remote triggering of TGF-β/Smad2/3 signaling in human adipose stem cells laden on magnetic scaffolds synergistically promotes tenogenic commitmen

Acta Biomaterialia 2020 Volume 113, Pages 488-500

Injuries affecting load bearing tendon tissues are a significant clinical burden and efficient treatments are still unmet. Tackling tendon regeneration, tissue engineering strategies aim to develop functional substitutes that recreate native tendon milieu. Tendon mimetic scaffolds capable of remote magnetic responsiveness and functionalized magnetic nanoparticles (MNPs) targeting cellular mechanosensitive receptors are potential instructive tools to mediate mechanotransduction in guiding tenogenic responses. In this work, we combine magnetically responsive scaffolds and targeted Activin A type II receptor in human adipose stem cells (hASCs), under alternating magnetic field (AMF), to synergistically facilitate external control over signal transduction. The combination of remote triggering…

Entrapped in cage (EiC) scaffolds of 3D-printed polycaprolactone and porous silk fibroin for meniscus tissue engineering

Biofabrication 2020 Volume 12, Number 2, Article 025028

The meniscus has critical functions in the knee joint kinematics and homeostasis. Injuries of the meniscus are frequent, and the lack of a functional meniscus between the femur and tibial plateau can cause articular cartilage degeneration leading to osteoarthritis development and progression. Regeneration of meniscus tissue has outstanding challenges to be addressed. In the current study, novel Entrapped in cage (EiC) scaffolds of 3D-printed polycaprolactone (PCL) and porous silk fibroin were proposed for meniscus tissue engineering. As confirmed by micro-structural analysis the entrapment of silk fibroin was successful, and all scaffolds had excellent interconnectivity (≥99%). The EiC scaffolds had more…

Investigation of multiphasic 3D-bioplotted scaffolds for sitespecific chondrogenic and osteogenic differentiation of human adipose-derived stem cells for osteochondral tissue engineering applications

Journal of Biomedical Materials Research Part B: Applied Biomaterials 2020 Volume 108, Issue 5, Pages 2017-2030

Osteoarthritis is a degenerative joint disease that limits mobility of the affected joint due to the degradation of articular cartilage and subchondral bone. The limited regenerative capacity of cartilage presents significant challenges when attempting to repair or reverse the effects of cartilage degradation. Tissue engineered medical products are a promising alternative to treat osteochondral degeneration due to their potential to integrate into the patient’s existing tissue. The goal of this study was to create a scaffold that would induce site‐specific osteogenic and chondrogenic differentiation of human adipose‐derived stem cells (hASC) to generate a full osteochondral implant. Scaffolds were fabricated using…

Suturable regenerated silk fibroin scaffold reinforced with 3D-printed polycaprolactone mesh: biomechanical performance and subcutaneous implantation

Journal of Materials Science: Materials in Medicine 2019 Volume 30, Article 63

The menisci have crucial roles in the knee, chondroprotection being the primary. Meniscus repair or substitution is favored in the clinical management of the meniscus lesions with given indications. The outstanding challenges with the meniscal scaffolds include the required biomechanical behavior and features. Suturability is one of the prerequisites for both implantation and implant survival. Therefore, we proposed herein a novel highly interconnected suturable porous scaffolds from regenerated silk fibroin that is reinforced with 3D-printed polycaprolactone (PCL) mesh in the middle, on the transverse plane to enhance the suture-holding capacity. Results showed that the reinforcement of the silk fibroin scaffolds…

Engineering patient-specific bioprinted constructs for treatment of degenerated intervertebral disc

Materials Today Communications 2019 Volume 19, Pages 506-512

Lower back pain (LBP), which is strongly associated with intervertebral disc (IVD) degeneration, is one of the most frequently reported age- and work-related disorder in actual society, leading to a huge socio-economic impact worldwide. The current treatments have poor clinical outcomes and do not consider each patient needs. Thus, there is a growing interest in the potential of personalized cell-based tissue engineering (TE) approaches aimed to regenerate the damaged IVD and efficiently restore full disc function. In this work, a bioink composed by silk fibroin (SF) hydrogel combined with elastin was used to bioprint patient-specific substitutes mimicking IVD ultrastructure, in…

Label free process monitoring of 3D bioprinted engineered constructs via dielectric impedance spectroscopy

Biofabrication 2018 Volume 10, Article 035012

Biofabrication processes can affect biological quality attributes of encapsulated cells within constructs. Currently, assessment of the fabricated constructs is performed offline by subjecting the constructs to destructive assays that require staining and sectioning. This drawback limits the translation of biofabrication processes to industrial practice. In this work, we investigate the dielectric response of viable cells encapsulated in bioprinted 3D hydrogel constructs to an applied alternating electric field as a label-free non-destructive monitoring approach. The relationship between β-dispersion parameters (permittivity change—Δε, Cole–Cole slope factor—α, critical polarization frequency—f c ) over the frequency spectrum and critical cellular quality attributes are investigated. Results…

Fast Setting Silk Fibroin Bioink for Bioprinting of Patient-Specific Memory-Shape Implants

Advanced Healthcare Materials 2017 Volume 6, Issue 22, 1701021

The pursuit for the “perfect” biomimetic and personalized implant for musculoskeletal tissue regeneration remains a big challenge. 3D printing technology that makes use of a novel and promising biomaterials can be part of the solution. In this study, a fast setting enzymatic-crosslinked silk fibroin (SF) bioink for 3D bioprinting is developed. Their properties are fine-tuned and different structures with good resolution, reproducibility, and reliability can be fabricated. Many potential applications exist for the SF bioinks including 3D bioprinted scaffolds and patient-specific implants exhibiting unique characteristics such as good mechanical properties, memory-shape feature, suitable degradation, and tunable pore architecture and morphology.

UV-assisted 3D bioprinting of nano-reinforced hybrid cardiac patch for myocardial tissue engineering

Tissue Engineering Part C: Methods 2017 Volume: 24 Issue 2, Pages 74-88

Biofabrication of cell supportive cardiac patches that can be directly implanted on myocardial infarct is a potential solution for myocardial infarction repair. Ideally, cardiac patches should be able to mimic myocardium extracellular matrix for rapid integration with the host tissue, raising the need to develop cardiac constructs with complex features. In particular, cardiac patches should be electrically conductive, mechanically robust and elastic, biologically active and pre-vascularized.. In this study, we aim to biofabricate a nano-reinforced hybrid cardiac patch laden with human coronary artery endothelial cells (HCAECs) with improved electrical, mechanical and biological behavior. A safe UV exposure time with insignificant…

Fabrication and Evaluation of Electrospun, 3D-Bioplotted, and Combination of Electrospun/3D-Bioplotted Scaffolds for Tissue Engineering Applications

BioMed Research International 2017 Volume 2017, Article ID 6956794

Electrospun scaffolds provide a dense framework of nanofibers with pore sizes and fiber diameters that closely resemble the architecture of native extracellular matrix. However, it generates limited three-dimensional structures of relevant physiological thicknesses. 3D printing allows digitally controlled fabrication of three-dimensional single/multimaterial constructs with precisely ordered fiber and pore architecture in a single build. However, this approach generally lacks the ability to achieve submicron resolution features to mimic native tissue. The goal of this study was to fabricate and evaluate 3D printed, electrospun, and combination of 3D printed/electrospun scaffolds to mimic the native architecture of heterogeneous tissue. We assessed their…

Effects of 3D-bioplotted polycaprolactone scaffold geometry on human adipose-derived stem cells viability and proliferation

Rapid Prototyping Journal 2017 Volume 23, Issue 3, Pages 534-542

Purpose This study investigates the effect of 3D-bioplotted polycaprolactone (PCL) scaffold geometry on the biological and mechanical characteristics of human adipose-derived stem cell (hASC) seeded constructs. Design/methodology/approach Four 3D-bioplotted scaffold disc designs (Ø14.5 x 2 mm) with two levels of strand-pore feature sizes and two strand laydown patterns (0°/90° or 0°/120°/240°) were evaluated for hASC viability, proliferation, and construct compressive stiffness after 14 days of in vitro cell culture. Findings Scaffolds with the highest porosity (smaller strand-pore size in 0°/120°/240°) yielded the highest hASC proliferation and viability. Further testing of this design in a 6 mm thick configuration showed that…

Pyrintegrin Induces Soft Tissue Formation by Transplanted or Endogenous Cells

Scientific Reports 2017 Issue 7, Article number: 36402

Focal adipose deficiency, such as lipoatrophy, lumpectomy or facial trauma, is a formidable challenge in reconstructive medicine, and yet scarcely investigated in experimental studies. Here, we report that Pyrintegrin (Ptn), a 2,4-disubstituted pyrimidine known to promote embryonic stem cells survival, is robustly adipogenic and induces postnatal adipose tissue formation in vivo of transplanted adipose stem/progenitor cells (ASCs) and recruited endogenous cells. In vitro, Ptn stimulated human adipose tissue derived ASCs to differentiate into lipid-laden adipocytes by upregulating peroxisome proliferator-activated receptor (PPARγ) and CCAAT/enhancer-binding protein-α (C/EBPα), with differentiated cells increasingly secreting adiponectin, leptin, glycerol and total triglycerides. Ptn-primed human ASCs seeded…

Osteogenic Differentiation of Three-Dimensional Bioprinted Constructs Consisting of Human Adipose-Derived Stem Cells In Vitro and In Vivo

PloS One 2016 Volume 11, Issue 6, e0157214

Here, we aimed to investigate osteogenic differentiation of human adipose-derived stem cells (hASCs) in three-dimensional (3D) bioprinted tissue constructs in vitro and in vivo. A 3D Bio-plotter dispensing system was used for building 3D constructs. Cell viability was determined using live/dead cell staining. After 7 and 14 days of culture, real-time quantitative polymerase chain reaction (PCR) was performed to analyze the expression of osteogenesis-related genes (RUNX2, OSX, and OCN). Western blotting for RUNX2 and immunofluorescent staining for OCN and RUNX2 were also performed. At 8 weeks after surgery, osteoids secreted by osteogenically differentiated cells were assessed by hematoxylin-eosin (H&E) staining,…

[Osteogenesis of human adipose-derived mesenchymal stem cells-biomaterial mixture in vivo after 3D bio-printing]

Journal of Peking University. Health Sciences 2016 Volume 48, Issue 1, Pages 45-50

To construct human adipose-derived mesenchymal stem cells (hASCs)-biomaterial mixture 3D bio-printing body and detect its osteogenesis in vivo, and to establish a guideline of osteogenesis in vivo by use of 3D bio-printing technology preliminarily.P4 hASCs were used as seed cells, whose osteogenic potential in vitro was tested by alkaline phosphatase (ALP) staining and alizarin red staining after 14 d of osteogenic induction. The cells were added into 20 g/L sodium alginate and 80 g/L gelatin mixture (cell density was 1×10(6)/mL), and the cell-sodium alginate-gelatin mixture was printed by Bioplotter 3D bio-printer (Envision company, Germany), in which the cells’survival rate was…

Exploring the Potential of Starch/Polycaprolactone Aligned Magnetic Responsive Scaffolds for Tendon Regeneration

Advanced Healthcare Materials 2016 Volume 5, Issue 2, pages 213–222

The application of magnetic nanoparticles (MNPs) in tissue engineering (TE) approaches opens several new research possibilities in this field, enabling a new generation of multifunctional constructs for tissue regeneration. This study describes the development of sophisticated magnetic polymer scaffolds with aligned structural features aimed at applications in tendon tissue engineering (TTE). Tissue engineering magnetic scaffolds are prepared by incorporating iron oxide MNPs into a 3D structure of aligned SPCL (starch and polycaprolactone) fibers fabricated by rapid prototyping (RP) technology. The 3D architecture, composition, and magnetic properties are characterized. Furthermore, the effect of an externally applied magnetic field is investigated on…

3D-Bioprinting of Polylactic Acid (PLA) Nanofibers-Alginate Hydrogel Bioink Containing Human Adipose-Derived Stem Cells

ACS Biomaterials Science and Engineering 2016 Volume 2, Issue 10, Pages 1732–1742

Bioinks play a central role in 3D-bioprinting by providing the supporting environment within which encapsulated cells can endure the stresses encountered during the digitally-driven fabrication process, and continue to mature, proliferate, and eventually form extracellular matrix (ECM). In order to be most effective, it is important that bioprinted constructs recapitulate the native tissue milieu as closely as possible. As such, musculoskeletal soft tissue constructs can benefit from bioinks that mimic their nanofibrous matrix constitution, which is also critical to their function. This study focuses on the development and proof-of-concept assessment of a fibrous bioink composed of alginate hydrogel, polylactic acid…