3D Bioplotter Research Papers
Long-Term Controlled Growth Factor Release Using Layer-by-Layer Assembly for the Development of In Vivo Tissue-Engineered Blood Vessels
The development of a well-designed tissue-engineered blood vessel (TEBV) still remains a challenge. In recent years, approaches in which the host response to implanted biomaterials is used to generate vascular constructs within the patient’s body have gained increasing interest. The delivery of growth factors to these in situ-engineered vascular grafts might enhance myofibroblast recruitment and the secretion of essential extracellular matrix proteins, thereby optimizing their functional properties. Layer-by-layer (LbL) coating has emerged as an innovative technology for the controlled delivery of growth factors in tissue engineering applications. In this study, we combined the use of surface-etched polymeric rods with LbL…
Enhanced In Vivo Vascularization of 3D-Printed Cell Encapsulation Device Using Platelet-Rich Plasma and Mesenchymal Stem Cells
The current standard for cell encapsulation platforms is enveloping cells in semipermeable membranes that physically isolate transplanted cells from the host while allowing for oxygen and nutrient diffusion. However, long-term viability and function of encapsulated cells are compromised by insufficient oxygen and nutrient supply to the graft. To address this need, a strategy to achieve enhanced vascularization of a 3D-printed, polymeric cell encapsulation platform using platelet-rich plasma (PRP) and mesenchymal stem cells (MSCs) is investigated. The study is conducted in rats and, for clinical translation relevance, in nonhuman primates (NHP). Devices filled with PRP, MSCs, or vehicle hydrogel are subcutaneously…
3D Bioprinting of Engineered Tissue Flaps with Hierarchical Vessel Networks (VesselNet) for Direct Host-To-Implant Perfusion
Engineering hierarchical vasculatures is critical for creating implantable functional thick tissues. Current approaches focus on fabricating mesoscale vessels for implantation or hierarchical microvascular in vitro models, but a combined approach is yet to be achieved to create engineered tissue flaps. Here, millimetric vessel-like scaffolds and 3D bioprinted vascularized tissues interconnect, creating fully engineered hierarchical vascular constructs for implantation. Endothelial and support cells spontaneously form microvascular networks in bioprinted tissues using a human collagen bioink. Sacrificial molds are used to create polymeric vessel-like scaffolds and endothelial cells seeded in their lumen form native-like endothelia. Assembling endothelialized scaffolds within vascularizing hydrogels incites…
Angiogenic effects of mesenchymal stem cells in combination with different scaffold materials
Tissue survival in regenerative tissue engineering requires rapid vascularization, which is influenced by scaffold material and seeded cell selection. Poly-l-lactide-co-glycolide (PLGA) and beta-tricalcium phosphate (β-TCP) are well-established biomaterials with angiogenic effects because of their material properties. Given the importance of the seeded cell type as a co-factor for vascularization, mesenchymal stem cells (MSCs) are known to have high angiogenic potential. We hypothesized that PLGA and β-TCP scaffolds seeded with MSCs would effectively induce a potent angiogenic response. Therefore, we studied the angiogenic effects after implanting PLGA and β-TCP scaffolds seeded with isogeneic MSCs in vivo. Fifty-six BALB/c mice were equally…
3D printed HUVECs/MSCs cocultures impact cellular interactions and angiogenesis depending on cell-cell distance
Vascularization is a crucial process during the growth and development of bone 1, yet it remains one of the main challenges in the reconstruction of large bone defects. The use of in vitro coculture of human umbilical vein endothelial cells (HUVECs) and human mesenchymal stem cells (hMSCs) has been one of the most explored options. Both cell types secrete specific growth factors that are mutually beneficial, and studies suggested that cell-cell communication and paracrine secretion could be affected by a number of factors. However, little is known about the effect of cell patterning and the distance between cell populations on…
Prevascularization of 3D printed bone scaffolds by bioactive hydrogels and cell co-culture
Vascularization is a fundamental prerequisite for large bone construct development and remains one of the main challenges of bone tissue engineering. Our current study presents the combination of 3D printing technique with a hydrogel-based prevascularization strategy to generate prevascularized bone constructs. Human adipose derived mesenchymal stem cells (ADMSC) and human umbilical vein endothelial cells (HUVEC) were encapsulated within our bioactive hydrogels, and the effects of culture conditions on in vitro vascularization were determined. We further generated composite constructs by forming 3D printed polycaprolactone/hydroxyapatite scaffolds coated with cell-laden hydrogels and determined how the co-culture affected vascularization and osteogenesis. It was demonstrated…
Short-term hypoxic preconditioning promotes prevascularization in 3D bioprinted bone constructs with stromal vascular fraction derived cells
Reconstruction of complex, craniofacial bone defects often requires autogenous vascularized bone grafts, and still remains a challenge today. In order to address this issue, we isolated the stromal vascular fraction (SVF) from adipose tissues and maintained the phenotypes and the growth of endothelial lineage cells within SVF derived cells (SVFC) by incorporating an endothelial cell medium. We 3D bioprinted SVFC within our hydrogel bioinks and conditioned the constructs in either normoxia or hypoxia. We found that short-term hypoxic conditioning promoted vascularization-related gene expression, whereas long-term hypoxia impaired cell viability and vascularization. 3D bioprinted bone constructs composed of polycaprolactone/hydroxyapatite (PCL/HAp) and…
3D Micropatterned all Flexible Microfluidic Platform for Microwave Assisted Flow Organic Synthesis (MAFOS)
In present work, we fabricate large area, all flexible and microwaveable PDMS microfluidic reactor that is printed via 3D bioplotter system. The sacrificial microchannels are printed on Polydimethoxylane (PDMS) substrates by direct ink writing method using water soluble Pluronic F-127 ink and encapsulated between PDMS layers. The structure of micrometer sized channels is analyzed by optical and electron microscopy techniques. The fabricated flexible microfluidic reactors are utilized for acetylation of different amines under microwave irradiation to get acetylamides in shorter reaction time and good yields in Microwave Assisted Flow Organic Synthesis (MAFOS).
[Osteogenesis of human adipose-derived mesenchymal stem cells-biomaterial mixture in vivo after 3D bio-printing]
To construct human adipose-derived mesenchymal stem cells (hASCs)-biomaterial mixture 3D bio-printing body and detect its osteogenesis in vivo, and to establish a guideline of osteogenesis in vivo by use of 3D bio-printing technology preliminarily.P4 hASCs were used as seed cells, whose osteogenic potential in vitro was tested by alkaline phosphatase (ALP) staining and alizarin red staining after 14 d of osteogenic induction. The cells were added into 20 g/L sodium alginate and 80 g/L gelatin mixture (cell density was 1×10(6)/mL), and the cell-sodium alginate-gelatin mixture was printed by Bioplotter 3D bio-printer (Envision company, Germany), in which the cells’survival rate was…
Accelerated vascularization of tissue engineering constructs in vivo by preincubated co-culture of aortic fragments and osteoblasts
There is an urgent critical need for the development of clinically relevant tissue-engineered large bone substitutes that can promote early vascularization after transplantation. To promote rapid blood vessel growth in the engineered tissue, we preincubated aortic fragments, as well as, co-cultures of aortic fragments and osteoblast-like cells in matrigel-filled PLGA scaffolds before implantation into the dorsal skinfold chambers of balb/c mice. Despite an acceptable and low inflammatory response, preincubated aortic fragments accelerate early angiogenesis of tissue-engineered constructs; the angiogenesis was found to occur faster than that observed in previous studies. Thus, the time-period for achieving a denser microvascular network could…
Spatiotemporal proliferation of human stromal cells adjusts to nutrient availability and leads to stanniocalcin-1 expression in vitro and in vivo
Cells and tissues are intrinsically adapted to molecular gradients and use them to maintain or change their activity. The effect of such gradients is particularly important for cell populations that have an intrinsic capacity to differentiate into multiple cell lineages, such as bone marrow derived mesenchymal stromal cells (MSCs). Our results showed that nutrient gradients prompt the spatiotemporal organization of MSCs in 3D culture. Cells adapted to their 3D environment without significant cell death or cell differentiation. Kinetics data and whole-genome gene expression analysis suggest that a low proliferation activity phenotype predominates in stromal cells cultured in 3D, likely due…
Decelerated vascularization in tissue-engineered constructs in association with diabetes mellitus in vivo
Aims Rapid blood vessel ingrowth in transplanted tissue engineering constructs is the key factor for successful incorporation, but many potential patients who may use engineered tissues suffer from widespread diseases that limit the capacity of neovascularization (e.g. diabetes). Thus, in vivo vascularization analyses of tissue-engineered constructs in angiogenically affected organisms are required. Methods We therefore investigated the in vivo incorporation of collagen-coated and cell-seeded poly-L-lactide-co-glycolide scaffolds in diabetic B6.BKS(D)-Leprdb/J mice using repetitive intravital fluorescence microscopy over a time period of two weeks. For this purpose, scaffolds were seeded with osteoblast-like or bone marrow mesenchymal stem cells and implanted into the…
Accelerating the early angiogenesis of tissue engineering constructs in vivo by the use of stem cells cultured in matrigel
In tissue engineering research, generating constructs with an adequate extent of clinical applications remains a major challenge. In this context, rapid blood vessel ingrowth in the transplanted tissue engineering constructs is the key factor for successful incorporation. To accelerate the microvascular development in engineered tissues, we preincubated osteoblast-like cells as well as mesenchymal stem cells or a combination of both cell types in Matrigel-filled PLGA scaffolds before transplantation into the dorsal skinfold chambers of balb/c mice. By the use of preincubated mesenchymal stem cells, a significantly accelerated angiogenesis was achieved. Compared with previous studies that showed a decisive increase of…
Additive effect of mesenchymal stem cells and VEGF to vascularization of PLGA scaffolds
Bone marrow derived mesenchymal stem cells (bmMSCs) are widely used for the generation of tissue engineering constructs, since they can differentiate into different cell types occurring in bone tissues. Until now their use for the generation of tissue engineering constructs is limited. All cells inside a tissue engineering construct die within a short period of time after implantation of the construct because vascularization and establishment of connections to the recipient circulatory system is a time consuming process. We therefore compared the influences of bmMSC, VEGF and a combination of both on the early processes of vascularization, utilizing the mice skinfold…
Comparably accelerated vascularization by preincorporation of aortic fragments and mesenchymal stem cells in implanted tissue engineering constructs
The demanding need for tissue replacement resulted in manifold approaches for the construction of different tissues. One common problem which hampers the clinical usage of tissue engineering constructs is a limited vascularization. In an attempt to accelerate the vascularization of tissue engineering constructs we compared the usage of bone marrow mesenchymal stem cells (bmMSCs) and fragments derived from the aorta in vivo. Tissue engineering constructs composed of PLGA scaffolds containing Matrigel (n = 8), aortic fragments embedded in Matrigel (n = 8), bmMSCs embedded in Matrigel (n = 8), and aortic fragments embedded in Matrigel combined with bmMSCs (n =…
Calvaria bone chamber-A new model for intravital assessment of osseous angiogenesis
The faith of tissue engineered bone replacing constructs depends on their early supply with oxygen and nutrients, and thus on a rapid vascularization. Although some models for direct observation of angiogenesis are described, none of them allows the observation of new vessel formation in desmal bone. Therefore, we developed a new chamber model suitable for quantitative in vivo assessment of the vascularization of bone substitutes by intravital fluorescence microscopy. In the parietal calvaria of 32 balb/c mice a critical size defect was set. Porous 3D-poly(L-lactide-co-glycolide) (PLGA)-blocks were inserted into 16 osseous defects (groups 3 and 4) while other 16 osseous…
A Novel Approach for Studying Microcirculation in Bone Defects by Intravital Fluorescence Microscopy
Angiogenic and inflammatory responses to biodegradable scaffolds were previously studied using the dorsal skinfold chamber for testing different scaffold materials. In this model, the angiogenic response originates from the soft tissue of the skin. Herein, we introduce a new model that allows the study of developing microcirculation of bone defects for testing tissue-engineered constructs. A bone defect was prepared in the femur of Balb/c mice by inserting a pin for intramedullary fixation, and a custom-made observation window fixed over the defect allowed constant observation. This study included three different groups: empty defect (control), defect filled with porous poly(l-lactide-co-glycolide), and beta-tricalcium-phosphate…
Integration of hollow fiber membranes improves nutrient supply in three-dimensional tissue constructs
Sufficient nutrient and oxygen transport is a potent modulator of cell proliferation in in vitro tissue-engineered constructs. The lack of oxygen and culture medium can create a potentially lethal environment and limit cellular metabolic activity and growth. Diffusion through scaffold and multi-cellular tissue typically limits transport in vitro, leading to potential hypoxic regions and reduction in the viable tissue thickness. For the in vitro generation of clinically relevant tissue-engineered grafts, current nutrient diffusion limitations should be addressed. Major approaches to overcoming these include culture with bioreactors, scaffolds with artificial microvasculature, oxygen carriers and pre-vascularization of the engineered tissues. This study…
Prolongated Survival of Osteoblast-Like Cells on Biodegradable Scaffolds by Heat Shock Preconditioning
The implantation of tissue-engineered constructs leads to hypoxic and physical stress to the seeded cells until they were reached by a functional microvascular system. Preconditioning of cells with heat shock induced heat shock proteins, which can support the cells to survive a subsequent episode of stress that would otherwise be lethal. Preconditioning of tissue-engineered constructs resulted in significantly higher number of surviving osteoblast-like cells (OLC). At the 6th and 10th day, angiogenic response was found comparative to poly(L-lactide-co-glycolide) (PLGA) scaffolds vitalized with either unconditioned or preconditioned OLC. However, they were significantly enhanced compared with the nonvitalized collagen-labeled PLGA scaffolds. This…
Accelerated Angiogenic Host Tissue Response to Poly(L-Lactide-co-Glycolide) Scaffolds by Vitalization with Osteoblast-like Cells
Background: Bone substitutes should ideally promote rapid vascularization, which could be accelerated if these substitutes were vitalized by autologous cells. Although adequate engraftment of porous poly(L-lactide-co-glycolide) (PLGA) scaffolds has been demonstrated in the past, it has not yet been investigated how vascularization is influenced by vitalization or, more precisely, by seeding PLGA scaffolds with osteoblast-like cells (OLCs). For this reason, we conducted an in vivo study to assess host angiogenic and inflammatory responses after the implantation of PLGA scaffolds vitalized with isogeneic OLCs. Materials and Methods: OLCs were seeded on collagen-coated PLGA scaffolds that were implanted into dorsal skinfold chambers…
Effects of VEGF loading on scaffold-confined vascularization
Adequate vascularization of tissue-engineered constructs remains a major challenge in bone grafting. In view of this, we loaded ß-tricalcium-phosphate (ß-TCP) and porous poly(L-lactide-co-glycolide) (PLGA) scaffolds via collagen coating with vascular endothelial growth factor (VEGF) and studied whether the VEGF loading improves scaffold angiogenesis and vascularization. Dorsal skinfold chambers were implanted into 48 balb/c mice, which were assigned to 6 groups (n = 8 each). Uncoated (controls), collagen-coated, and additionally VEGF-loaded PLGA and ß-TCP scaffolds were inserted into the chambers. Angiogenesis, neovascularization, and leukocyte-endothelial cell interaction were analyzed repeatedly during a 14-day observation period using intravital fluorescence microscopy. Furthermore, VEGF release…
Consequences of seeded cell type on vascularization of tissue engineering constructs in vivo
Implantation of tissue engineering constructs is a promising technique to reconstruct injured tissue. However, after implantation the nutrition of the constructs is predominantly restricted to vascularization. Since cells possess distinct angiogenic potency, we herein assessed whether scaffold vitalization with different cell types improves scaffold vascularization. 32 male balb/c mice received a dorsal skinfold chamber. Angiogenesis, microhemodynamics, leukocyte–endothelial cell interaction and microvascular permeability induced in the host tissue after implantation of either collagen coated poly (l-lactide-co-glycolide) (PLGA) scaffolds (group 4), additionally seeded with osteoblast-like cells (OLCs, group 1), bone marrow mesenchymal stem cells (bmMSCs, group 2) or a combination of OLCs…
Angiogenic and inflammatory response to biodegradable scaffolds in dorsal skinfold chambers of mice
For tissue engineering, scaffolds should be biocompatible and promote neovascularization. Because little is known on those specific properties, we herein studied in vivo the host angiogenic and inflammatory response after implantation of commonly used scaffold materials. Porous poly(l-lactide-co-glycolide) (PLGA) and collagen–chitosan–hydroxyapatite hydrogel scaffolds were implanted into dorsal skinfold chambers of balb/c mice. Additional animals received cortical bone as an isogeneic, biological implant, while chambers of animals without implants served as controls. Angiogenesis and neovascularization as well as leukocyte–endothelial cell interaction and microvascular permeability were analyzed over 14 day using intravital fluorescence microscopy. PLGA scaffolds showed a slight increase in leukocyte…