3D Bioplotter Research Papers
Coating of 3D printed PCL/TCP scaffolds using homogenized-fibrillated collagen
Background Poly(3-caprolactone) (PCL)/β-tricalcium phosphate (β-TCP) composite scaffolds fabricated by three-dimensional (3D) printing are one of the common scaffolds for bone tissue regeneration. However, the main challenge of these 3D printed PCL/β-TCP scaffolds is the fact that many cells pass from porosities during in vitro cell seeding, leading to poor initial cell attachment. This study aimed to demonstrate the fabrication of a new collagen coating process for optimizing the hydrophilic property and cell-substrate interactions. This method may be used for coating collagen on any relevant biomedical constructs made of synthetic polymers to increase their biocompatibility and cell attachment. Materials and methods…
Nanosilicate-Functionalized Polycaprolactone Orchestrates Osteogenesis and Osteoblast-Induced Multicellular Interactions for Potential Endogenous Vascularized Bone Regeneration
Massive oral and maxillofacial bone defect regeneration remains a major clinical challenge due to the absence of functionalized bone grafts with ideal mechanical and proregeneration properties. In the present study, Laponite (LAP), a synthetic nanosilicate, is incorporated into polycaprolactone (PCL) to develop a biomaterial for bone regeneration. It is explored whether LAP-embedded PCL would accelerate bone regeneration by orchestrating osteoblasts to directly and indirectly induce bone regeneration processes. The results confirmed the presence of LAP in PCL, and LAP is distributed in the exfoliated structure without aggregates. Incorporation of LAP in PCL slightly improved the compressive properties. LAP-embedded PCL is…
Cryo‐3D Printing of Hierarchically Porous Polyhydroxymethylene Scaffolds for Hard Tissue Regeneration
High molecular weight polyhydroxymethylene (PHM) has a repeat unit identical to that of low molecular weight sugar alcohols and exhibits carbohydrate‐like properties. Herein, cryogenic extrusion‐based 3D printing is combined with a phase separation in water to fabricate hierarchically porous PHM scaffolds containing interconnected macro‐, micro‐, and nanopores. As PHM is infusible and insoluble in common solvents, its precursor polyvinylene carbonate (PVCA) dissolved in dimethylsulfoxide (DMSO) is used to 3D print hierarchically porous PVCA scaffolds that are converted into PHM by hydrolysis without impairing the pore architectures. Similar to low‐temperature deposition manufacturing, the PVCA/DMSO freezes on a build platform at −78…
A tri-component knee plug for the 3rd generation of autologous chondrocyte implantation
Here, we report a newly designed knee plug to be used in the 3rd generation of Autologous Chondrocyte Implantation (ACI) in order to heal the damaged knee cartilage. It is composed of three components: The first component (Bone Portion) is a 3D printed hard scaffold with large pores (~ 850 µm), made by hydroxyapatite and β-tricalcium phosphate to accommodate the bony parts underneath the knee cartilage. It is a cylinder with a diameter of 20 mm and height of 7.5 mm, with a slight dome shape on top. The plug also comprises a Cartilage Portion (component 2) which is a 3D…
Heparan sulfate loaded polycaprolactone-hydroxyapatite scaffolds with 3D printing for bone defect repair
With the increasing applications of 3D printing technology in biomedical field, the composition or additives of the related materials has become critical for the next development. In the current study, we have prepared 3D printed polycaprolactone-hydroxyapatite (PCL-HA) porous scaffolds with loaded heparan sulfate (HS), in order to reveal the reparative effect of different concentrations of HS on the healing of bone defects. As a result, the scaffold itself showed sound compression resistance, air porosity and good biocompatibility. From both in vitro and in vivo experiments, the scaffold with low concentration of HS led to positive effects in promoting osteoblast maturation…
Silicon substituted hydroxyapatite/VEGF scaffolds stimulate bone regeneration in osteoporotic sheep
Silicon-substituted hydroxyapatite (SiHA) macroporous scaffolds have been prepared by robocasting. In order to optimize their bone regeneration properties, we have manufactured these scaffolds presenting different microstructures: nanocrystalline and crystalline. Moreover, their surfaces have been decorated with vascular endothelial growth factor (VEGF) to evaluate the potential coupling between vascularization and bone regeneration. In vitro cell culture tests evidence that nanocrystalline SiHA hinders pre-osteblast proliferation, whereas the presence of VEGF enhances the biological functions of both endothelial cells and pre-osteoblasts. The bone regeneration capability has been evaluated using an osteoporotic sheep model. In vivo observations strongly correlate with in vitro cell culture…
Three-dimensional printed multiphasic scaffolds with stratified cell-laden gelatin methacrylate hydrogels for biomimetic tendon-to-bone interface engineering
Background The anatomical properties of the enthesis of the rotator cuff are hardly regained during the process of healing. The tendon-to-bone interface is normally replaced by fibrovascular tissue instead of interposition fibrocartilage, which impairs biomechanics in the shoulder and causes dysfunction. Tissue engineering offers a promising strategy to regenerate a biomimetic interface. Here, we report heterogeneous tendon-to-bone interface engineering based on a 3D-printed multiphasic scaffold. Methods A multiphasic poly(ε-caprolactone) (PCL)–PCL/tricalcium phosphate–PCL/tricalcium phosphate porous scaffold was manufactured using 3D printing technology. The three phases of the scaffold were designed to mimic the graded tissue regions in the tendon-to-bone interface—tendon, fibrocartilage, and…
Design of a new 3D‐printed joint plug
This paper introduces a kit of parts as a novel three‐dimensional (3D)–printed joint plug, in which each of the parts function cooperatively to treat cartilage damage in joints of the human body (e.g., hips, wrists, elbow, knee, and ankle). Three required and one optional parts are involved in this plug. The first part is a 3D‐printed hard scaffold (bone portion) to accommodate bone cells, and the second is a 3D‐printed soft scaffold (cartilage portion) overlying the bone portion to accommodate chondrocytes. The third part of joint plug is a permeable membrane, termed film, to cover the entire plug to provide…
Development of 3D-printed PLGA/TiO2 nanocomposite scaffolds for bone tissue engineering applications
Porous scaffolds were 3D-printed using poly lactic-co-glycolic acid (PLGA)/TiO2 composite (10:1 weight ratio) for bone tissue engineering applications. Addition of TiO2 nanoparticles improved the compressive modulus of scaffolds. Differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) revealed an increase in both glass transition temperature and thermal decomposition onset of the composite compared to pure PLGA. Furthermore, addition of TiO2 was found to enhance the wettability of the surface evidenced by reducing the contact angle from 90.5 ± 3.2 to 79.8 ± 2.4 which is in favor of cellular attachment and activity. The obtained results revealed that PLGA/TiO2 scaffolds significantly improved osteoblast proliferation compared to…
3D Printing Nanoscale Bioactive Glass Scaffolds Enhance Osteoblast Migration and Extramembranous Osteogenesis through Stimulating Immunomodulation
Bioactive glass (BG) can repair bone defects, however, it is not clear whether BG has the ability for bone augmentation without making any bone defect. Unlike the intramembranous osteogenesis in bone defect repair, the extramembranous osteogenesis occurs outside the cortical bone and the osteoprogenitor cells show the reversed migration. Herein, nanoscale bioactive glass scaffolds (BGSs) are fabricated, and their role and immunomodulation‐related mechanism in the extramembranous osteogenesis are investigated. The in vitro migration and differentiation of calvaria preosteoblasts are studied by culturing with peripheral macrophage‐conditioned medium after stimulating with BGSs. The results indicate that the proinflammatory environment significantly promotes preosteoblast…
Polycaprolactone-and polycaprolactone/ceramic-based 3D-bioplotted porous scaffolds for bone regeneration: A comparative study
One of the critical challenges that scaffolding faces in the organ and tissue regeneration field lies in mimicking the structure, and the chemical and biological properties of natural tissue. A high-level control over the architecture, mechanical properties and composition of the materials in contact with cells is essential to overcome such challenge. Therefore, definition of the method, materials and parameters for the production of scaffolds during the fabrication stage is critical. With the recent emergence of rapid prototyping (RP), it is now possible to create three-dimensional (3D) scaffolds with the essential characteristics for the proliferation and regeneration of tissues, such…
In vitro colonization of stratified bioactive scaffolds by pre-osteoblast cells
Mesoporous bioactive glass-polycaprolactone (MBG-PCL) scaffolds have been prepared by robocasting, a layer by layer rapid prototyping method, by stacking of individual strati. Each stratus was independently analyzed during the cell culture tests with MC3T3-E1 preosteblast-like cells. The presence of MBG stimulates the colonization of the scaffolds by increasing the cell proliferation and differentiation. MBG-PCL composites not only enhanced pre-osteoblast functions but also allowed cell movement along its surface, reaching the upper stratus faster than in pure PCL scaffolds. The cells behavior on each individual stratus revealed that the scaffolds colonization depends on the chemical stimuli supplied by the MBG dissolution…
Glasses in bone regeneration: A multiscale issue
3D scaffolds based in mesoporous bioactive glasses (MBGs) are being widely investigated to use in bone tissue engineering (TE) applications. These scaffolds are often obtained by rapid prototyping (RP) and exhibit an array of interconnected pores in a hierarchy of sizes. The ordered mesopore network (around 4 nm in diameter) is optimal for the adsorption and release of bone inductor biomolecules, and the arrangement of macropores over 100 μm facilitates the bone cell ingrowths and angiogenesis. Nevertheless MBG composition can be varied almost infinitely at the atomic scale by including in the glass network oxides of inorganic elements with a…
Fabrication of novel Si-doped Hydroxyapatite/Gelatine scaffolds by rapid prototyping for drug delivery and bone regeneration
Porous 3-D scaffolds consisting of gelatine and Si-doped hydroxyapatite were fabricated at room temperature by rapid prototyping. Microscopic characterization revealed a highly homogeneous structure, showing the pre-designed porosity (macroporosity) and a lesser in-rod porosity (microporosity). The mechanical properties of such scaffolds are close to those of trabecular bone of the same density. The biological behavior of these hybrid scaffolds is greater than that of pure ceramic scaffolds without gelatine, increasing pre-osteoblastic MC3T3-E1 cell differentiation (matrix mineralization and gene expression). Since the fabrication process of these structures was carried out at mild conditions, an antibiotic (vancomycin) was incorporated in the slurry…
Biocompatibility analysis of an electrically-activated silver-based antibacterial surface system for medical device applications
The costs associated with the treatment of medical device and surgical site infections are a major cause of concern in the global healthcare system. To prevent transmission of such infections, a prophylactic surface system that provides protracted release of antibacterial silver ions using low intensity direct electric current (LIDC; 28 μA system current at 6 V) activation has been recently developed. To ensure the safety for future in vivo studies and potential clinical applications, this study assessed the biocompatibility of the LIDC-activated interdigitated silver electrodes-based surface system; in vitro toxicity to human epidermal keratinocytes, human dermal fibroblasts, and normal human…
Comparison of the osteoblastic activity conferred on Si-doped hydroxyapatite scaffolds by different osteostatin coatings
Parathyroid hormone-related protein (107-111) (osteostatin) induces osteogenic effects in osteoblasts in vitro and in regenerating bone in mice and rabbits. In this study we used osteoblastic MC3T3-E1 cell cultures to evaluate and compare the bioactivity of this peptide either adsorbed or covalently bound (by its C-terminus) to Si-doped hydroxyapatite (Si-HA) scaffolds after organic (-NH2) functionalization. By these means osteostatin can be locally released or kept anchored to the scaffold surface. This was confirmed by chemical analysis and by testing the efficiency of osteostatin-loaded Si-HA scaffolds (placed in Transwell chambers) in healing a scratch wound in mouse pluripotent mesenchymal C3H10T1/2 cells.…
Immobilization and bioactivity evaluation of FGF-1 and FGF-2 on powdered silicon-doped hydroxyapatite and their scaffolds for bone tissue engineering
Fibroblast growth factors (FGFs) are polypeptides that control the proliferation and differentiation of various cell types including osteoblasts. FGFs are also strong inducers of angiogenesis, necessary to obtain oxygen and nutrients during tissue repair. With the aim to incorporate these desirable FGF biological properties into bioceramics for bone repair, silicon substituted hydroxyapatites (Si-HA) were used as materials to immobilize bioactive FGF-1 and FGF-2. Thus, the binding of these growth factors to powdered Si-HA and Si-HA scaffolds was carried out efficiently in the present study and both FGFs maintained its biological activity on osteoblasts after its immobilization. The improvement of cell…