3D Bioplotter Research Papers
Ink Based on the Tunable Swollen Microsphere for a 3D Printing Hydrogel with Broad-Range Mechanical Properties
The development of the effective 3D printing strategy for diverse functional monomers is still challenging. Moreover, the conventional 3D printing hydrogels are usually soft and fragile due to the lack of an energy dissipation mechanism. Herein, a microsphere mediating ink preparation strategy is developed to provide tailored rheological behavior for various monomer direct ink writings. The chitosan microspheres are used as an exemplary material due to their tunable swelling ratio under the acid-drived electrostatic repulsion of the protonated amino groups. The rheological behaviors of the swollen chitosan microsphere (SCM) are independent on the monomer types, and various functional secondary polymers…
Anisotropic, Strong, and Thermally Insulating 3D-Printed Nanocellulose–PNIPAAM Aerogels
Cellulose is a promising candidate for the fabrication of superinsulating materials, which would be of great interest for thermal management applications as well as for the scientific community. Until now, the production of strong cellulose-based aerogels has been dominated by traditional manufacturing processes, which have limited the possibilities to achieve the structural control and mechanical properties seen in natural materials such as wood. In this work, we show a simple but versatile method to fabricate cellulose aerogels in intricate geometries. We take advantage of the 3D printing technique direct ink writing to control both the shape and the thermal-mechanical properties…