3D Bioplotter Research Papers
Chemiresistive Sensor for Enhanced CO2 Gas Monitoring
Carbon dioxide (CO2) gas sensing and monitoring have gained prominence for applications such as smart food packaging, environmental monitoring of greenhouse gases, and medical diagnostic tests. Although CO2 sensors based on metal oxide semiconductors are readily available, they often suffer from limitations such as high operating temperatures (>250 °C), limited response at elevated humidity levels (>60% RH), bulkiness, and limited selectivity. In this study, we designed a chemiresistive sensor for CO2 detection to overcome these problems. The sensing material of this sensor consists of a CO2 switchable polymer based on N-3-(dimethylamino)propyl methacrylamide (DMAPMAm) and methoxyethyl methacrylate (MEMA) [P(D-co-M)], and diethylamine.…
Tailoring fractal structure via 3D printing to achieve flexible stretchable electrodes based on Ecoflex/CNT/CF
Flexible electrodes are crucial for the widespread application of flexible electronics. Flexible stretchable electrodes are a research hotspot for finding a solution for the inability of flexible electrodes to withstand large deformations. In this study, the suitability of silicone rubber (Ecoflex), carbon nanotube (CNT), and carbon fiber (CF) composite materials for flexible devices and their ratios were evaluated for the first time. 3D-printed electrodes based on fractal structures with tensile insensitivity and high linearity were prepared to achieve integrated stretching of flexible devices. To demonstrate the benefits and impact of fractal structures on electrode performance, we fabricated flexible stretchable electrodes…
Ink Based on the Tunable Swollen Microsphere for a 3D Printing Hydrogel with Broad-Range Mechanical Properties
The development of the effective 3D printing strategy for diverse functional monomers is still challenging. Moreover, the conventional 3D printing hydrogels are usually soft and fragile due to the lack of an energy dissipation mechanism. Herein, a microsphere mediating ink preparation strategy is developed to provide tailored rheological behavior for various monomer direct ink writings. The chitosan microspheres are used as an exemplary material due to their tunable swelling ratio under the acid-drived electrostatic repulsion of the protonated amino groups. The rheological behaviors of the swollen chitosan microsphere (SCM) are independent on the monomer types, and various functional secondary polymers…
System-on-Board Integrated Flexible OEGFET Aptasensor for Multianalyte Testing in Saliva
The need for oral health monitoring point-of-care (PoC) systems is ever growing. We have recently reported a novel, aptamer-based flexible biosensor for detection of a high impact hormone—cortisol—in saliva samples using organic electrolyte-gated FET (OEGFET) technology. In this work, we are reporting a system-on-board (SoB) level integration of an improved flexible OEGFET aptasensor, which was previously reliant on a bench-top measurement setup. The reported flexible OEGFET aptasensor has integrated soft microfluidics and a low-power (< 300 mW) customized printed circuit board. The interfacing of flexible aptasensor to the circuit board was achieved using a low-temperature extrusion printing technique. The system…
Multi-material 3D printing of piezoelectric and triboelectric integrated nanogenerators with voxel structure
Flexible and highly filled piezoelectric nanogenerators with excellent performance play an indispensable role in portable electronic devices, while the bottlenecks are hard to improve the polarization efficiency and prepare three-dimensional (3D) amplifying effect structure. Compared with other typical 3D printing technologies, direct ink writing multi-material printing (DIW-M3D), can extrude multiple viscoelastic ink materials with a wide selection of materials, which has the advantage of integrated multi-material processing. However, there are fewer reports on the use of DIW-M3D technology to print functional composite materials. Inspired from Lego block structures, we utilized DIW-M3D technology to prepare fabrications with alternating arrangements of piezoelectric…
Advanced Printing Transfer of Assembled Silver Nanowire Network into Elastomer for Constructing Stretchable Conductors
Excellent electrical performance of assemblies of 1D silver nanowires (AgNWs) has been demonstrated in the past years. Up to now, however, there are limited approaches to realize simultaneously deterministic assembly with dense arrangement of AgNWs and desired functional layouts. Herein, an assembly strategy from compressed air-modulated alignment of AgNWs to heterogeneous integration of stretchable sensing devices through printing transfer is proposed. In this process, a convective flow induced by compressed air brings the AgNWs to the air–droplet interface, where the AgNWs are assembled with excellent alignment and packing due to the surface flow, van der Waals, and capillary interactions. Compared…
A Flexible and Polymer-Based Chemiresistive CO2 Gas Sensor at Room Temperature
CO2 sensing is important in many applications ranging from air-quality monitoring to food packaging. In this study, an amine-functionalized copolymer, poly(N-[3-(dimethylamino)propyl]-methacrylamide-co-2-N-morpholinoethyl methacrylate) (p(D-co-M)) is synthesized, offering moderate basicity suitable for a wide CO2 detection range. Taking advantage of this characteristic of p(D-co-M), this polymer is used for designing a chemiresistive, low-cost, flexible, and reversible CO2 sensor. The p(D-co-M)-based sensors show a noticeable decrease in their direct current resistance and alternating current impedance upon exposure to a wide range of CO2 concentration (1–100%) at room temperature with a response and a recovery time of 6 and 14 min, respectively. Additionally, the…
A Polymer-Based Chemiresistive Gas Sensor for Selective Detection of Ammonia Gas
Breath analysis is a non-invasive tool used in medical diagnosis. However, the current generation of breath analyzers is expensive, time-consuming, and requires sample gas separation. In this work, a simple, yet effective, low-cost ammonia gas sensor based on poly(2-acrylamido-2-methyl-1-propanesulfonic acid) is presented for non-invasive medical diagnosis. The designed sensor has a broad detection range to ammonia gas up to 1000 ppm with a limit of detection of 30 ppb. This is a robust sensor, which functions at high relative humidity (RH) (>90%) and exhibits consistent electrical responses under different test conditions. The result of a blind test validates the sensor’s…
Efficiency assessment of wood and cellulose-based optical elements for terahertz waves
Polarized THz time domain spectroscopy was used to study the anisotropic properties of wood-based materials for potential optical elements in the THz range, such as half-wave and quarter-wave plates. Wood samples of different species and sample thickness were studied experimentally showing high birefringence but rather high absorption. We elaborate on two approaches to optimize the optical properties for use as wave plates and assess them based on a figure of merit describing their efficiency as a function of birefringence and absorption. The first approach is to dry the wood samples, which significantly improves the efficiency of wave plates. The second…
4D Printing of Humidity-Driven Seed Inspired Soft Robots
Geraniaceae seeds represent a role model in soft robotics thanks to their ability to move autonomously across and into the soil driven by humidity changes. The secret behind their mobility and adaptivity is embodied in the hierarchical structures and anatomical features of the biological hygroscopic tissues, geometrically designed to be selectively responsive to environmental humidity. Following a bioinspired approach, the internal structure and biomechanics of Pelargonium appendiculatum (L.f.) Willd seeds are investigated to develop a model for the design of a soft robot. The authors exploit the re-shaping ability of 4D printed materials to fabricate a seed-like soft robot, according…
Water-induced polymer swelling and its application in soft electronics
Polymer blend system has been commonly applied in a wide variety of applications. Herein, we propose to introduce sugar particles to polymer matrix, which results in a controllable polymer swelling under the action of osmotic pressure upon soaking in water. Taking advantage of this economic and environment-friendly, water-induced polymer swelling process, we have fabricated wrinkled conductive films and 3D structures by depositing conductive materials on the swollen polymer substrates for stretchable strain sensing devices. Several commercial silicone elastomers were utilized in the study. Key processing factors affecting the polymer swelling were investigated, including film thickness, sugar concentration, and temperature of…
Silver nanowire-based stretchable strain sensors with hierarchical wrinkled structures
As an engineering frontier, highly stretchable sensors are widely applied in many fields, such as human motion detection, personal healthcare monitoring, and human-machine interactions. In this study, novel silver nanowire (AgNW)-based stretchable sensors with hierarchical wrinkled structures were fabricated through a two-step process, namely water-induced swelling and AgNW deposition. As highly soluble additives, sodium chloride particles were incorporated into the elastomer matrix. Upon soaking in dopamine aqueous solution, significant swelling was introduced onto the elastomer substrate. The dopamine deposition is accompanied with the swelling process, which endows the sample surface with ultra-hydrophilicity. Additionally, the dopamine-modified swollen samples “capture” the nanowires…
Three-Dimensional Printed Bimodal Electronic Skin with High Resolution and Breathability for Hair Growth
People with neurological deficits face difficulties perceiving their surroundings, resulting in an urgent need for wearable electronic skin (e-skin) that can monitor external stimuli and temperature changes. However, the monolithic structure of e-skin is not conducive to breathability and hinders hair growth, limiting its wearing comfort. In this work, we prepared fully three-dimensional (3D) printed e-skin that allowed hair penetration and growth. This e-skin also achieved simultaneous pressure and temperature detection and a high tactile resolution of 100 cm–2, which is close to that of human fingertips. The temperature sensor maintained linear measurements within 10–60 °C. The pore microstructure prepared…
Electrical Response of Poly(N-[3-(dimethylamino)Propyl] Methacrylamide) to CO2 at a Long Exposure Period
Amine-functionalized polymers (AFPs) are able to react with carbon dioxide (CO2) and are therefore useful in CO2 capture and sensing. To develop AFP-based CO2 sensors, it is critical to examine their electrical responses to CO2 over long periods of time, so that the device can be used consistently for measuring CO2 concentration. To this end, we synthesized poly(N-[3-(dimethylamino)propyl] methacrylamide) (pDMAPMAm) by free radical polymerization and tested its ability to behave as a CO2-responsive polymer in a transducer. The electrical response of this polymer to CO2 upon long exposure times was measured in both the aqueous and solid phases. Direct current…
A 3D printable dynamic nanocellulose/nanochitin self-healing hydrogel and soft strain sensor
Presented here is the synthesis of a 3D printable nano-polysaccharide self-healing hydrogel for flexible strain sensors. Consisting of three distinct yet complementary dynamic bonds, the crosslinked network comprises imine, hydrogen, and catecholato-metal coordination bonds. Self-healing of the hydrogel is demonstrated by macroscopic observation, rheological recovery, and compression measurements. The hydrogel was produced via imine formation of carboxyl methyl chitosan, oxidized cellulose nanofibers, and chitin nanofibers followed by two subsequent crosslinking stages: immersion in tannic acid (TA) solution to create hydrogen bonds, followed by soaking in FeIII solution to form catecholato-metal coordination bonds between TA and FeIII. The metal coordination bonds…
Remote Sensing and Remote Actuation via Silicone–Magnetic Nanorod Composites
The capacity for a soft material to combine remote sensing and remote actuation is highly desirable for many applications in soft robotics and wearable technologies. This work presents a silicone elastomer with a suspension of a small weight fraction of ferromagnetic nickel nanorods, which is capable of both sensing deformation and altering stiffness in the presence of an external magnetic field. Cylinders composed of silicone elastomer and 1% by weight nickel nanorods experience large increases in compressive modulus when exposed to an external magnetic field. Incremental compressions totaling 600 g of force applied to the same silicone–nanorod composites increase the…
Versatile carbon-loaded shellac ink for disposable printed electronics
Emerging technologies such as smart packaging are shifting the requirements on electronic components, notably regarding service life, which counts in days instead of years. As a result, standard materials are often not adapted due to economic, environmental or manufacturing considerations. For instance, the use of metal conductive tracks in disposable electronics is a waste of valuable resources and their accumulation in landfills is an environmental concern. In this work, we report a conductive ink made of carbon particles dispersed in a solution of shellac. This natural and water-insoluble resin works as a binder, favourably replacing petroleum-derived polymers. The carbon particles…
3D Printable and Biocompatible Iongels for Body Sensor Applications
Soft-ionic materials with biocompatibility and 3D printability are needed to develop next-generation devices to interface between electronic and biological signals. Herein, thermoreversible and biocompatible ionic liquid gels or iongels, which can be processed by direct ink writing are reported. The iongels are designed by taking advantage of polyvinyl alcohol/phenol interactions to gelify biocompatible cholinium carboxylate ionic liquids. The obtained iongels are stable, soft, and flexible materials (Young modulus between 14 and 70 kPa) with high ionic conductivity (1.8 × 10–2 S cm–1). Interestingly, they presented thermoreversible properties with gel–sol transitions ranging from 85 and 110 °C, which allows the iongel…
Highly Conductive Silicone Elastomers via Environment-Friendly Swelling and In Situ Synthesis of Silver Nanoparticles
Flexible and stretchable conductors are crucial components for next-generation flexible devices. Wrinkled structures often have been created on such conductors by depositing conductive materials on the pre-stretched or organic solvent swollen samples. Herein, water swelling is first proposed to generate the wrinkled structures on silicone elastomers. By immersing silicone/sugar hybrid in water, a significant amount of swelling occurs as a result of osmosis and capillary interactions with the sugar and silicone matrix. Considering the drastic swelling effect and controllable swelling ratio, water swelling is used to replace the conventional pre-stretching and organic solvent swelling to fabricate stretchable conductors. In situ…
Paper-Based, Chemiresistive Sensor for Hydrogen Peroxide Detection
Detecting hydrogen peroxide (H2O2) as the side product of enzymatic reactions is of great interest in food and medical applications. Despite the advances in this field, the majority of reported H2O2 sensors are bulky, expensive, limited to only one phase detection (either gas or liquid), and require multistep fabrications. This article aims to address some of these limitations by presenting a 3D printable paper-based sensor made from poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) decorated with horseradish peroxidase, an enzyme able to interact with H2O2. Unlike most electrochemical PEDOT:PSS-based H2O2 sensors with voltametric or potentiometric mechanisms, the sensing mechanism in this technology is impedimetric, significantly…
Implantable Nanotube Sensor Platform for Rapid Analyte Detection
The use of nanoparticles within living systems is a growing field, but the long‐term effects of introducing nanoparticles to a biological system are unknown. If nanoparticles remain localized after in vivo implantation unanticipated side effects due to unknown biodistribution can be avoided. Unfortunately, stabilization and retention of nanoparticles frequently alters their function.1 In this work multiple hydrogel platforms are developed to look at long‐term localization of nanoparticle sensors with the goal of developing a sensor platform that will stabilize and localize the nanoparticles without altering their function. Two different hydrogel platforms are presented, one with a liquid core of sensors…