3D Bioplotter Research Papers

Displaying all papers about Self-Healing (5 results)

A self-healing nanocomposite double network bacterial nanocellulose/gelatin hydrogel for three dimensional printing

Carbohydrate Polymers 2023 Volume 313, Article 120879

Extrusion-based three-dimensional (3D) printing of gelatin is important for additive manufactured tissue engineering scaffolds, but gelatin’s thermal instability has remained an ongoing challenge. The gelatin tends to suddenly collapse at mild temperatures, which is a significant limitation for using it at physiological temperature of 37 °C. Hence, fabrication of a thermo-processable gelatin hydrogel adapted for extrusion-based additive manufacturing is still a challenge. To achieve this, a self-healing nanocomposite double-network (ncDN) gelatin hydrogel was fabricated with high thermo-processability, shear-thinning, mechanical strength, self-healing, self-recovery, and biocompatibility. To do this, amino group-rich gelatin was first created by combining gelatin with carboxyl methyl chitosan.…

Dynamic and Degradable Imine-Based Networks for 3D-Printing of Soft Elastomeric Self-Healable Devices

Advanced Materials Interfaces 2023 Volume 10, Issue 17, Article 2300066

Self-healable degradable networks encounter a growing popularity for biomedical applications due to their ability to recover their properties after damage. Self-healable hydrogels dominate with applications in tissue engineering and drug delivery. On the opposite and despite their potential for medical devices, self-healable elastomers remain scarce, especially if they must be compatible with fused deposition modeling (FDM) 3D-printing and self-heal at physiological temperature under a hydrated state. These unmet challenges are addressed in this work with degradable elastomeric networks based on dynamic imine bonds prepared from multi(aldehyde) and multi(amine) hydrophobic PEG-PLA star-shaped copolymers. The star topology of these copolymers is the…

A 3D printable dynamic nanocellulose/nanochitin self-healing hydrogel and soft strain sensor

Carbohydrate Polymers 2022 Volume 291, Article 119545

Presented here is the synthesis of a 3D printable nano-polysaccharide self-healing hydrogel for flexible strain sensors. Consisting of three distinct yet complementary dynamic bonds, the crosslinked network comprises imine, hydrogen, and catecholato-metal coordination bonds. Self-healing of the hydrogel is demonstrated by macroscopic observation, rheological recovery, and compression measurements. The hydrogel was produced via imine formation of carboxyl methyl chitosan, oxidized cellulose nanofibers, and chitin nanofibers followed by two subsequent crosslinking stages: immersion in tannic acid (TA) solution to create hydrogen bonds, followed by soaking in FeIII solution to form catecholato-metal coordination bonds between TA and FeIII. The metal coordination bonds…

Nearly Perfect 3D Structures Obtained by Assembly of Printed Parts of Polyamide Ionene Self-Healing Elastomer

ACS Applied Polymer Materials 2020 Volume 2, Issue 11, Pages 4352-4359

Herein, we demonstrate 3D printing of an elastomeric imidazolium polyamide-ionene which exhibits intrinsic shape-memory (SM) and self-healing (SH) character, reporting optimized printing conditions and rheological properties. This study shows the suitability of this material for 3D-printing via fused deposition modeling. The 3D-printed objects retain elasticity and SM when external force is applied, and the elastomeric character is quantified via mechanical testing. This work highlights the benefits of SH behavior as a design feature combatting inherent material weaknesses or insufficient adhesion at seams and layer junctions. DFT calculations confirmed the importance of ionic interactions and H-bonding in the SH process.

Double dynamic cellulose nanocomposite hydrogels with environmentally adaptive self-healing and pH-tuning properties

Cellulose 2020 Volume 27, Pages 1407–1422

Dynamic hydrogels are prepared by either dynamic covalent bonds or supramolecular chemistry. Herein, we develop a dynamic hydrogel by combining both dynamic covalent bonds and supramolecular chemistry that exhibits environmentally adaptive self-healing and pH-tuning properties. To do so, we prepared a gelatin–nanopolysaccharide mixed hydrogel containing pyrogallol/catechol groups and trivalent metal ions. The as-prepared hydrogels are able to heal damage inflicted on them under acidic (pH 3 and 6), neutral (pH 7), and basic (pH 9) environments. The mechanism of healing at acidic and neutral pHs is dominated by coordination bonds between pyrogallol/catechol groups of tannic acid and ferric ions, whilst…