3D Bioplotter Research Papers

Displaying all papers about PDMS (10 results)

Water-induced polymer swelling and its application in soft electronics

Applied Surface Science 2022 Volume 577, Article 151895
Y. Yang H. Zhao

Polymer blend system has been commonly applied in a wide variety of applications. Herein, we propose to introduce sugar particles to polymer matrix, which results in a controllable polymer swelling under the action of osmotic pressure upon soaking in water. Taking advantage of this economic and environment-friendly, water-induced polymer swelling process, we have fabricated wrinkled conductive films and 3D structures by depositing conductive materials on the swollen polymer substrates for stretchable strain sensing devices. Several commercial silicone elastomers were utilized in the study. Key processing factors affecting the polymer swelling were investigated, including film thickness, sugar concentration, and temperature of…

Three-Dimensional Printed Bimodal Electronic Skin with High Resolution and Breathability for Hair Growth

ACS Applied Materials & Interfaces 2022 Volume 14, Issue 27, Pages 31493-31501

People with neurological deficits face difficulties perceiving their surroundings, resulting in an urgent need for wearable electronic skin (e-skin) that can monitor external stimuli and temperature changes. However, the monolithic structure of e-skin is not conducive to breathability and hinders hair growth, limiting its wearing comfort. In this work, we prepared fully three-dimensional (3D) printed e-skin that allowed hair penetration and growth. This e-skin also achieved simultaneous pressure and temperature detection and a high tactile resolution of 100 cm–2, which is close to that of human fingertips. The temperature sensor maintained linear measurements within 10–60 °C. The pore microstructure prepared…

Double-Side-Coated Grid-Type Mechanical Membrane Biosensor Based on AuNPs Self-assembly and 3D Printing

Advanced Materials Interfaces 2022 Volume 9, Issue 3, Article 2101461

The membrane based on receptor functionalization provides a new paradigm for the development of mechanical biosensors. However, improvement of sensitivity and test accuracy is still a challenge for mechanical biosensors in practical application. Herein, a surface stress mechanical biosensor (MBioS) based on double-side-gold nanoparticale (AuNP)-coated grid-type polydimethylsiloxane (PDMS) membrane (D-G-MBioS) and 3D printing for human serum albumin (HSA) detection is developed. The surface stress is amplified by the grid coupling sandwich immune structure to improve the sensitivity of the MbioS, successfully reducing limite of detection (LOD) by two orders of magnitude. By self-assembly of AuNPs, the double-side-coated PDMS membrane is…

Three-Dimensional Printing in Stimuli-Responsive Yield-Stress Fluid with an Interactive Dual Microstructure

ACS Applied Materials & Interfaces 2022 Volume 14, Issue 34, Pages 39420–39431

Yield-stress support bath-enabled three-dimensional (3D) printing has been widely used in recent years for diverse applications. However, current yield-stress fluids usually possess single microstructures and still face the challenges of on-demand adding and/or removing support bath materials during printing, constraining their application scope. This study aims to propose a concept of stimuli-responsive yield-stress fluids with an interactive dual microstructure as support bath materials. The microstructure from a yield-stress additive allows the fluids to present switchable states at different stresses, facilitating an embedded 3D printing process. The microstructure from stimuli-responsive polymers enables the fluids to have regulable rheological properties upon external…

PDMS Fumed Silica

Remote Sensing and Remote Actuation via Silicone–Magnetic Nanorod Composites

Advanced Materials Technologies 2021 Volume 6, Issue 6, Article 2001099

The capacity for a soft material to combine remote sensing and remote actuation is highly desirable for many applications in soft robotics and wearable technologies. This work presents a silicone elastomer with a suspension of a small weight fraction of ferromagnetic nickel nanorods, which is capable of both sensing deformation and altering stiffness in the presence of an external magnetic field. Cylinders composed of silicone elastomer and 1% by weight nickel nanorods experience large increases in compressive modulus when exposed to an external magnetic field. Incremental compressions totaling 600 g of force applied to the same silicone–nanorod composites increase the…

3D Printing of Antibacterial Polymer Devices Based on Nitric Oxide Release from Embedded S-Nitrosothiol Crystals

ACS Applied Bio Materials 2021 Volume 4, Issue 10, Pages 7653–7662

Controlled release of drugs from medical implants is an effective approach to reducing foreign body reactions and infections. We report here on a one-step 3D printing strategy to create drug-eluting polymer devices with a drug-loaded bulk and a drug-free coating. The spontaneously formed drug-free coating dramatically reduces the surface roughness of the implantable devices and serves as a protective layer to suppress the burst release of drugs. A high viscosity liquid silicone that can be extruded based on its shear-thinning property and quickly vulcanize upon exposure to ambient moisture is used as the ink for 3D printing. S-Nitrosothiol type nitric…

Multi-compartment Organ-on-a-Chip Based on Electrospun Nanofiber Membrane as In Vitro Jaundice Disease Model

Advanced Fiber Materials 2021 Volume 3, Pages 383–393

Organ-on-a-chip (OOC) is now becoming a potential alternative to the classical preclinical animal models, which reconstitutes in vitro the basic function of specific human tissues/organs and dynamically simulates physiological or pathological activities in tissue and organ level. Despite of the much progress achieved so far, there is still an urgent need to explore new biomaterials to construct a reliable and efficient tissue–tissue interface and a general fabrication strategy to expand from single-organ OOC to multi-organ OOC in an easy manner. In this paper, we propose a novel strategy to prepare double-compartment organ-on-a-chip (DC-OOC) using electrospun poly(l-lactic acid)/collagen I (PLLA/Col I)…

Defect-engineered reduced graphene oxide sheets with high electric conductivity and controlled thermal conductivity for soft and flexible wearable thermoelectric generators

Nano Energy 2018 Volume 54, Pages 163-174

The direct use of graphene for potential thermoelectric material requires the opening of its bandgap without loss of its high electric conductivity. We herein demonstrate a synchronous reduction and assembly strategy to fabricate large-area reduced graphene oxide films with high electric conductivity and optimized low thermal conductivity assembly. The reduced graphene oxide films have a high electric conductivity and low thermal conductivity, which results from high longitudinal carrier mobility of the lattice domains as well as the enhanced scattering of phonons in the defects and their boundary that substantially reduces the mean phonon free path and the thermal conductivity. Flexible…

3D Micropatterned all Flexible Microfluidic Platform for Microwave Assisted Flow Organic Synthesis (MAFOS)

ChemPlusChem 2017 Volume 83, Issue 1, Pages 42-46

In present work, we fabricate large area, all flexible and microwaveable PDMS microfluidic reactor that is printed via 3D bioplotter system. The sacrificial microchannels are printed on Polydimethoxylane (PDMS) substrates by direct ink writing method using water soluble Pluronic F-127 ink and encapsulated between PDMS layers. The structure of micrometer sized channels is analyzed by optical and electron microscopy techniques. The fabricated flexible microfluidic reactors are utilized for acetylation of different amines under microwave irradiation to get acetylamides in shorter reaction time and good yields in Microwave Assisted Flow Organic Synthesis (MAFOS).

Characterization of Mechanical Properties of Tissue Scaffolds by Phase Contrast Imaging and Finite Element Modeling

Journal of Biomechanical Engineering 2015 Volume 137, Issue 8, Article 081004

In tissue engineering, the cell and scaffold approach has shown promise as a treatment to regenerate diseased and/or damaged tissue. In this treatment, an artificial construct (scaffold) is seeded with cells, which organize and proliferate into new tissue. The scaffold itself biodegrades with time, leaving behind only newly formed tissue. The degradation qualities of the scaffold are critical during the treatment period, since the change in the mechanical properties of the scaffold with time can influence cell behavior. To observe in time the scaffold’s mechanical properties, a straightforward method is to deform the scaffold and then characterize scaffold deflection accordingly.…

PDMS Imaging