3D Bioplotter Research Papers

Displaying all papers about Silica (5 results)

PDMS Microspheres as Rheological Additives for PDMS-Based DIW Inks

Advanced Industrial and Engineering Polymer Research 2024

Direct Ink Writing holds vast potential for additive manufacturing with broad material compatibility as long as appropriate rheological properties are exhibited by the material of choice. Additives are often included to attain the desired rheological properties for printing, but these same additives can yield products with undesirable mechanical properties. For example, silica fillers are used to create silicone inks appropriate for printing but yield cured structures that are too stiff. In this work, we investigate the applicability of PDMS microspheres as a rheological and thixotropic additive for PDMS based DIW inks. We utilize a facile oil-in-water emulsion method to reproducibly…

3D-printed strong hybrid materials with low shrinkage for dental restoration

Composites Science and Technology 2021 Volume 213, Article 108902

Flowable photocurable resins can be printed effectively by stereolithographic 3D printing for dental applications; however, the 3D-printed objects’ mechanical properties cannot meet the requirements for the dental restorative materials. In this study, a strong customized crown for tooth repair was first prepared via direct ink writing 3D printing from a high-viscosity hybrid paste of acrylic monomer and multi-scale inorganic particles. The results showed that the hybrid resin-based composites (RBCs) could be printed successfully and smoothly through a metal nozzle with a gradually shrinking channel. The theoretical simulation of finite element methods was consistent with the experiment results. The printed objects…

3D ink-printed, sintered porous silicon scaffolds for battery applications

Journal of Power Sources 2021 Volume 507, Article 230298

The fabrication of 3D ink-printed and sintered porous Si scaffolds as electrode material for lithium-ion batteries is explored. A hierarchically-porous architecture consisting of channels (~220 μm in diameter) between microporous Si struts is created to accommodate the large volume change from Si (de)lithiation during electrochemical (dis)charging. The influence of sintering parameters on Si strut porosity and the resulting mechanical and electrochemical properties of the scaffolds are studied experimentally and computationally. Varying sintering temperatures (1150–1300 °C) and sintering times (1–16 h) the open porosity within the Si filaments can be tailored between 46 and 60%. Pore size (3–6 μm) and wall…

Shape memory epoxy composites with high mechanical performance manufactured by multi-material direct ink writing

Composites Part A: Applied Science and Manufacturing 2020 Volume 135, Article 105903

Using 3D printing to manufacture shape memory polymers (SMPs) becomes popular, since the technique endows SMPs the ability to shape into desired structures according to their applications. Among various types of SMPs, epoxy-based shape memory polymer and their composites are known for their high modulus and strength. However, limited by their rheological behavior, it is still hard to prepare high-quality printable epoxy materials. Here, by carefully tuning of rheological properties, we can prepare printable ink showing good shape retention, excellent mechanical performances below and above the glass transition temperature of epoxy, as well as good shape memory effect. The prepared…

High thermal conductive epoxy based composites fabricated by multi-material direct ink writing

Composites Part A: Applied Science and Manufacturing 2020 Volume 129, Article 105684

Thermal management is of importance to microelectronic industry. Owing to both excellent thermal conduction and electrical insulation, hexagonal boron nitride (BN) platelets are the widely-used thermal conductive fillers in polymers. Adding high content of BN can endow polymers high thermal conductivity, but in most cases, destroy the flexibility, failure strength as well as processability of the polymers significantly. Here, we report a multi-material 3D printing technique to prepare high thermal conductive epoxy based composites, by which BN platelets were assembled together in heat-conducting phase to form the dense, continuous thermal pathway. The BN platelets show excellent alignment along printing direction…