3D Bioplotter Research Papers
Void‐Free 3D Bioprinting for In Situ Endothelialization and Microfluidic Perfusion
Two major challenges of 3D bioprinting are the retention of structural fidelity and efficient endothelialization for tissue vascularization. Both of these issues are addressed by introducing a versatile 3D bioprinting strategy, in which a templating bioink is deposited layer‐by‐layer alongside a matrix bioink to establish void‐free multimaterial structures. After crosslinking the matrix phase, the templating phase is sacrificed to create a well‐defined 3D network of interconnected tubular channels. This void‐free 3D printing (VF‐3DP) approach circumvents the traditional concerns of structural collapse, deformation, and oxygen inhibition, moreover, it can be readily used to print materials that are widely considered “unprintable.” By…
3D Micropatterned all Flexible Microfluidic Platform for Microwave Assisted Flow Organic Synthesis (MAFOS)
In present work, we fabricate large area, all flexible and microwaveable PDMS microfluidic reactor that is printed via 3D bioplotter system. The sacrificial microchannels are printed on Polydimethoxylane (PDMS) substrates by direct ink writing method using water soluble Pluronic F-127 ink and encapsulated between PDMS layers. The structure of micrometer sized channels is analyzed by optical and electron microscopy techniques. The fabricated flexible microfluidic reactors are utilized for acetylation of different amines under microwave irradiation to get acetylamides in shorter reaction time and good yields in Microwave Assisted Flow Organic Synthesis (MAFOS).