3D Bioplotter Research Papers
Anisotropic, Strong, and Thermally Insulating 3D-Printed Nanocellulose–PNIPAAM Aerogels
Cellulose is a promising candidate for the fabrication of superinsulating materials, which would be of great interest for thermal management applications as well as for the scientific community. Until now, the production of strong cellulose-based aerogels has been dominated by traditional manufacturing processes, which have limited the possibilities to achieve the structural control and mechanical properties seen in natural materials such as wood. In this work, we show a simple but versatile method to fabricate cellulose aerogels in intricate geometries. We take advantage of the 3D printing technique direct ink writing to control both the shape and the thermal-mechanical properties…
Prototyping an additive co-fabrication workflow for architecture: utilizing cyanobacterial MICP in robotic deposition
With the increasing need for architectural sustainability, biodesign offers a new approach to incorporating living organisms in building materials. Bacteria hold a range of biological activities that impact their environment, and which could enable the solidification of inorganic materials; this has already been seen with microbially-induced carbonate precipitation that strengthens bonds between sand particles. This paper describes the novel development of an additive co-fabrication manufacturing process, demonstrating an interdisciplinary approach of architecture and microbiology. Specifically, the activity of a biological deposition (i.e., cyanobacterial calcium carbonate precipitation) and its integration with that of a robotic deposition (i.e., a sand-based biomixture) within…
Cellular, Mineralized, and Programmable Cellulose Composites Fabricated by 3D Printing of Aqueous Pastes Derived from Paper Wastes and Microfibrillated Cellulose
Combining recycling of paper wastes (WPs) with extrusion‐based additive manufacturing represents a sustainable route to cellular cellulose composites tailored for lightweight construction. Particularly, shear mixing of shredded WPs with an aqueous solution of a polymer binder like polyvinyl alcohol (PVA) yields aqueous pastes suitable for 3D printing. As a shear thinning additive, both WP and microfibrillated cellulose account for enhanced shear thinning and dimensional stability. Opposite to the formation of dense WP/PVA composites by melt extrusion, 3D printing of aqueous pastes produces cellular cellulose/PVA composites exhibiting hierarchical pore architectures. In spite of low densities around 0.8 g cm−3, high Young’s…
Optimisation of mixture properties for 3D printing of geopolymer concrete
Freedom of design, customisation, automation, waste minimisation, reduced labour and building complex structures with cheaper materials are the main initiatives for developing 3D printed structures. The fresh properties of concrete are the most important aspects of a successful 3D printing. Concrete requires high workability for extrusion, optimum open time and high early strength in order to support the subsequent layers for 3D printing. Therefore, a mixture design that can satisfy these requirements is needed. Geopolymer concrete is a sustainable solution to traditional Portland cement-based concrete that uses waste materials. In addition, the controlled alkali-activation of geopolymer precursors in order to…