3D Bioplotter Research Papers
Preparation of antibacterial and osteoconductive 3D-printed PLGA/Cu(I)@ZIF-8 nanocomposite scaffolds for infected bone repair
Background The repair of large bone defects is a great challenge in clinical practice. In this study, copper-loaded-ZIF-8 nanoparticles and poly (lactide-co-glycolide) (PLGA) were combined to fabricate porous PLGA/Cu(I)@ZIF-8 scaffolds using three-dimensional printing technology for infected bone repair. Methods The surface morphology of PLGA/Cu(I)@ZIF-8 scaffolds was investigated by transmission electron microscopy and scanning electron microscopy. The PLGA/Cu(I)@ZIF-8 scaffolds were co-cultured with bacteria to determine their antibacterial properties, and with murine mesenchymal stem cells (MSCs) to explore their biocompatibility and osteoconductive properties. The bioactivity of the PLGA/Cu(I)@ZIF-8 scaffolds was evaluated by incubating in simulated body fluid. Results The results revealed that…
Dual-functional 3D-printed composite scaffold for inhibiting bacterial infection and promoting bone regeneration in infected bone defect models
Infection is one of the pivotal causes of nonunion in large bone defect after trauma or tumor resection. Three-dimensional (3D) composite scaffold with multifunctional-therapeutic properties offer many advantages over allogenic or xenogenic bone grafting for the restoration of challenging infected bone defects. In the previous study, we demonstrated that quaternized chitosan (HACC)-grafted polylactide-co-glycolide (PLGA)/hydroxyapatite (HA) scaffold (PLGA/HA/HACC) via 3D-printing technique exhibited significantly improved antimicrobial and osteoconductive property in vitro, together with good biocompatibility in vivo. Hence, the present study further investigated whether such an innovative bone substitute could effectively inhibit the bacterial biofilm formation and promote bone regeneration in vivo.…
Anti-infective efficacy, cytocompatibility and biocompatibility of a 3D-printed osteoconductive composite scaffold functionalized with quaternized chitosan
Contaminated or infected bone defects remain serious challenges in clinical trauma and orthopaedics, and a bone substitute with both osteoconductivity and antibacterial properties represents an improvement for treatment strategy. In this study, quaternized chitosan (hydroxypropyltrimethyl ammonium chloride chitosan, HACC) was grafted to 3D-printed scaffolds composed of polylactide-co-glycolide (PLGA) and hydroxyapatite (HA), in order to design bone engineering scaffolds endowed with antibacterial and osteoconductive properties. We found that both the PLGA/HA/HACC and PLGA/HACC composite scaffolds decreased bacterial adhesion and biofilm formation under in vitro and in vivo conditions. Additionally, ATP leakage assay indicated that immobilizing HACC on the scaffolds could effectively…
[Performance of 3D-printed polylactic acid-nano-hydroxyapatite/chitosan/doxycycline antibacterial scaffold]
BACKGROUND: Polylactic acid has good biocompatibility and biodegradability, and has become a new orthopedic fixation material. However, the lack of cell recognition signal of this material is not conducive to cell adhesion and osteogenic differentiation, which limits its application in biomaterials. OBJECTIVE: 3D-printed polylactic acid-nano-hydroxyapatite (nHA)/chitosan (CS) scaffold to evaluate its drug sustained-release and biological properties
Additive Manufacturing of Nanocellulose Aerogels with Structure-Oriented Thermal, Mechanical, and Biological Properties
Additive manufacturing (AM) is widely recognized as a versatile tool for achieving complex geometries and customized functionalities in designed materials. However, the challenge lies in selecting an appropriate AM method that simultaneously realizes desired microstructures and macroscopic geometrical designs in a single sample. This study presents a direct ink writing method for 3D printing intricate, high-fidelity macroscopic cellulose aerogel forms. The resulting aerogels exhibit tunable anisotropic mechanical and thermal characteristics by incorporating fibers of different length scales into the hydrogel inks. The alignment of nanofibers significantly enhances mechanical strength and thermal resistance, leading to higher thermal conductivities in the longitudinal…
3D printed PLGA scaffold with nano-hydroxyapatite carrying linezolid for treatment of infected bone defects
Background Linezolid has been reported to protect against chronic bone and joint infection. In this study, linezolid was loaded into the 3D printed poly (lactic-co-glycolic acid) (PLGA) scaffold with nano-hydroxyapatite (HA) to explore the effect of this composite scaffold on infected bone defect (IBD). Methods PLGA scaffolds were produced using the 3D printing method. Drug release of linezolid was analyzed by elution and high-performance liquid chromatography assay. PLGA, PLGA-HA, and linezolid-loaded PLGA-HA scaffolds, were implanted into the defect site of a rabbit radius defect model. Micro-CT, H&E, and Masson staining, and immunohistochemistry were performed to analyze bone infection and bone…
3D printed and smart alginate wound dressings with pH-responsive drug and nanoparticle release
The pH of a wound site can undergo a significant change from its normal range of 5.4–5.6 to a more alkaline environment of 7.2–8.9 after being infected by microorganisms. Therefore, the development of a smart material that can respond to this shift in pH and release antimicrobial agents for effective treatment of wound infections holds great promise for the future of wound care. In the present work, we produced 3D printed alginate wound dressings doped with calcium phosphate nanoparticles (CaP NPs), referred to as alginate-CaP nanocomposites hereafter. The CaP NPs enabled pH-responsive switching of the degradation and drug release of…
Bioprinted scaffolds assembled as synthetic skin grafts by natural hydrogels containing fibroblasts and bioactive agents
Hydrogel skin grafts provide a moist environment and act as a regenerative template to the newly formed tissue. In this study, we developed 3D-bio-printed hydrogels using methacrylated pectin and methacrylated gelatin together with an antibacterial agent (curcumin), a bioactive agent (Vitamin-C) and fibroblast cells. Curcumin release was almost 10 times higher at pH 7.4 than pH 5.0, and it demonstrated antimicrobial affinity against Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli. The developed 3D-bio-printed hydrogels containing cells and bioactive agents demonstrated high cell viability, cell proliferation, and collagen production, and are promising skin graft candidates for the treatment of full-thickness problematic…
Antibacterial effect of 3D printed mesoporous bioactive glass scaffolds doped with metallic silver nanoparticles
The development of new biomaterials for bone tissue regeneration with high bioactivity abilities and antibacterial properties is being intensively investigated. We have synthesized nanocomposites formed by mesoporous bioactive glasses (MBGs) in the ternary SiO2, CaO and P2O5 system doped with metallic silver nanoparticles (AgNPs) that were homogenously embedded in the MBG matrices. Ag/MBG nanocomposites have been directly synthesized and silver species were spontaneously reduced to metallic AgNPs by high temperatures (700 °C) obtained of last MBG synthesis step. Three-dimensional silver-containing mesoporous bioactive glass scaffolds were fabricated showing uniformly interconnected ultrapores, macropores and mesopores. The manufacture method consisted of a combination…
3D printing of shape-morphing and antibacterial anisotropic nanocellulose hydrogels
We report on a procedure for the preparation, printing and curing of antibacterial poly(N-isopropylacrylamide) nanocellulose-reinforced hydrogels. These composites present a highly anisotropic microstructure which allows to control and modulate the resulting mechanical properties. The incorporation of such nanoparticles enables us to modify both the strength and the humidity-dependent swelling direction of printed parts, offering a fourth-dimensional property to the resulting composite. Antibacterial properties of the hydrogels were obtained by incorporating the functionalized peptide ε-polylysine, modified with the addition of a methacrylate group to ensure UV-immobilization. We highlight the relevance of well-adapted viscoelastic properties of our material for 3D printing by…
3D Printing of Antimicrobial Alginate/Bacterial-Cellulose Composite Hydrogels by Incorporating Copper Nanostructures
Novel antimicrobial 3D-printed alginate/bacterial-cellulose hydrogels with in situ-synthesized copper nanostructures were developed having improved printability. Prior to 3D printing, two methods were tested for the development of the alginate hydrogels: (a) ionic cross-linking with calcium ions followed by ion exchange with copper ions (method A) and (b) ionic cross-linking with copper ions (method B). A solution containing sodium borohydride, used as a reducing agent, was subsequently added to the hydrogels, producing in situ clusters of copper nanoparticles embedded in the alginate hydrogel matrix. The method used and concentrations of copper and the reducing agent were found to affect the stability…