3D Bioplotter Research Papers

Displaying all papers about Curcumin (3 results)

Switch-on mode of bioenergetic channels regulated by curcumin-loaded 3D composite scaffold to steer bone regeneration

Chemical Engineering Journal 2023 Volume 452, Part 1, Article 139165

Metabolic energy to steer osteoblastic differentiation of bone marrow mesenchymal stem cells (BMSCs) could be a promising therapeutic target for bone tissue engineering (BTE), but prior knowledge of this issue is limited. To address bone defects with BTE, we customized a three-dimensional (3D)-printed composite scaffold (Cur@MS) to allow the controlled release of curcumin, which could facilitate the “switch-on” mode of Glucose transporter 1 (GLUT1) in BMSCs. Consequently, bioenergetic channels, i.e. glucose uptake, were “switched on” to activate GLUT1-RUNX2 crosstalk, which was closely orchestrated with bone regeneration. Furthermore, curcumin-induced cholesterol/lipid raft (Cho/LR) was a “sensor” to trigger the “switch” (GLUT1) by…

Hydrogel Bioinks of Alginate and Curcumin-Loaded Cellulose Ester-Based Particles for the Biofabrication of Drug-Releasing Living Tissue Analogs

ACS Applied Materials & Interfaces 2023 Volume 15, Issue 34, Pages 40898-40912

3D bioprinting is a versatile technique that allows the fabrication of living tissue analogs through the layer-by-layer deposition of cell-laden biomaterials, viz. bioinks. In this work, composite alginate hydrogel-based bioinks reinforced with curcumin-loaded particles of cellulose esters (CEpCUR) and laden with human keratinocytes (HaCaT) are developed. The addition of the CEpCUR particles, with sizes of 740 ± 147 nm, improves the rheological properties of the inks, increasing their shear stress and viscosity, while preserving the recovery rate and the mechanical and viscoelastic properties of the resulting fully cross-linked hydrogels. Moreover, the presence of these particles reduces the degradation rate of…

3D Bio-Printed Bone Scaffolds Incorporated with Natural Antibacterial Compounds

Journal of Materials Science and Chemical Engineering 2022 Volume 10, Pages 63-69

3D Bioprinting plays an irreplaceable role in bone tissue engineering. Shellac and curcumin are two natural compounds that are widely used in the food and pharmaceutical sectors. In this study, a new composite scaffold with good biocompatibility and antibacterial ability was manufactured by adding shellac and curcumin into the traditional bone scaffold through low-temperature three-dimensional printing (LT-3DP), and its impact on the osteoimmune microenvironment was evaluated.