3D Bioplotter Research Papers
Hydrogel Bioinks of Alginate and Curcumin-Loaded Cellulose Ester-Based Particles for the Biofabrication of Drug-Releasing Living Tissue Analogs
3D bioprinting is a versatile technique that allows the fabrication of living tissue analogs through the layer-by-layer deposition of cell-laden biomaterials, viz. bioinks. In this work, composite alginate hydrogel-based bioinks reinforced with curcumin-loaded particles of cellulose esters (CEpCUR) and laden with human keratinocytes (HaCaT) are developed. The addition of the CEpCUR particles, with sizes of 740 ± 147 nm, improves the rheological properties of the inks, increasing their shear stress and viscosity, while preserving the recovery rate and the mechanical and viscoelastic properties of the resulting fully cross-linked hydrogels. Moreover, the presence of these particles reduces the degradation rate of…
3D Bio-Printed Bone Scaffolds Incorporated with Natural Antibacterial Compounds
3D Bioprinting plays an irreplaceable role in bone tissue engineering. Shellac and curcumin are two natural compounds that are widely used in the food and pharmaceutical sectors. In this study, a new composite scaffold with good biocompatibility and antibacterial ability was manufactured by adding shellac and curcumin into the traditional bone scaffold through low-temperature three-dimensional printing (LT-3DP), and its impact on the osteoimmune microenvironment was evaluated.