3D Bioplotter Research Papers
BC enhanced photocurable hydrogel based on 3D bioprinting for nasal cartilage repair
The repair of nasal cartilage lesions and defects is still a difficult problem in nasal surgery, and nasal cartilage tissue engineering will be an effective way to solve this problem. Hydrogel has excellent application potential in tissue engineering. In order to produce a 3D printable scaffold for cartilage regeneration, we prepared gelatin methacryloyl (GelMA)/hyaluronic acid methacryloyl (HAMA)/bacterial cellulose (BC) composite hydrogel. The composite hydrogel was characterized by swelling, mechanical properties, and printing performance test. Compared with GelMA/HAMA hydrogel, the addition of BC not only significantly enhanced the mechanical properties of the hydrogels, but also improved the printing fidelity. At the…
Nanofibrillated cellulose/gellan gum hydrogel-based bioinks for 3D bioprinting of skin cells
The development of suitable bioinks is an important research topic in the field of three-dimensional (3D) bioprinting. Herein, novel hydrogel-based bioinks composed of nanofibrillated cellulose (NFC) and gellan gum (GG) in different NFC/GG mass proportions (90:10, 80:20, 70:30, and 60:40) were developed and characterized. The increase in the content of GG, as well as its combination with NFC, enhanced their rheological properties, increasing both storage (G’) and loss (G”) moduli and the G’ recovery capacity of the hydrogels (from 70.05 ± 3.06 % (90:10) to 82.63 ± 1.21 % (60:40)), as well as their mechanical properties, increasing the compressive stiffness…
Bacterial nanocellulose-reinforced gelatin methacryloyl hydrogel enhances biomechanical property and glycosaminoglycan content of 3D-bioprinted cartilage
Tissue-engineered ear cartilage scaffold based on three-dimensional (3D) bioprinting technology presents a new strategy for ear reconstruction in individuals with microtia. Natural hydrogel is a promising material due to its excellent biocompatibility and low immunogenicity. However, insufficient mechanical property required for cartilage is one of the major issues pending to be solved. In this study, the gelatin methacryloyl (GelMA) hydrogel reinforced with bacterial nanocellulose (BNC) was developed to enhance the biomechanical properties and printability of the hydrogel. The results revealed that the addition of 0.375% BNC significantly increased the mechanical properties of the hydrogel and promoted cell migration in the…
Loose Pre-Cross-Linking Mediating Cellulose Self-Assembly for 3D Printing Strong and Tough Biomimetic Scaffolds
The lack of an effective printable ink preparation method and the usual mechanically weak performance obstruct the functional 3D printing hydrogel exploitation and application. Herein, we propose a gentle pre-cross-linking strategy to enable a loosely cross-linked cellulose network for simultaneously achieving favorable printability and a strong hydrogel network via mediating the cellulose self-assembly. A small amount of epichlorohydrin is applied to (i) slightly pre-cross-link the cellulose chains for forming the percolating network to regulate the rheological properties and (ii) form the loosely cross-linked points to mediate the cellulose chains’ self-assembly for achieving superior mechanical properties. The fabrication of the complex…
Solvent Mediating the in Situ Self-Assembly of Polysaccharides for 3D Printing Biomimetic Tissue Scaffolds
Intensively studied 3D printing technology is frequently hindered by the effective printable ink preparation method. Herein, we propose an elegant and gentle solvent consumption strategy to slowly disrupt the thermodynamic stability of the biopolymer (polysaccharide: cellulose, chitin, and chitosan) solution to slightly induce the molecule chains to in situ self-assemble into nanostructures for regulating the rheological properties, eventually achieving the acceptable printability. The polysaccharides are dissolved in the alkali/urea solvent. The weak Lewis acid fumed silica (as solvent mediator) is used to (i) slowly and partially consume the alkali/urea solvent to induce the polysaccharide chains to self-assemble into nanofibers to…
Fluorescent Carbon‐ and Oxygen‐Doped Hexagonal Boron Nitride Powders as Printing Ink for Anticounterfeit Applications
Increasing demands for optical anticounterfeiting technology require the development of versatile luminescent materials with tunable photoluminescence properties. Herein, a number of fluorescent carbon‐ and oxygen‐doped hexagonal boron nitride (denoted as BCNO) phosphors are found to offer a such high‐tech anticounterfeiting solution. These multicolor BCNO powders, developed in a two‐step process with controlled annealing and oxidation, feature rod‐like particle shape, with varied luminescence properties. Studies of the optical properties of BCNO, along with other characterization, provide insight into this underexplored material. Anticounterfeiting applications are demonstrated with printed patterns which are indistinguishable to the naked eye under visible light but become highly…
Bacterial cellulose nanofibers promote stress and fidelity of 3D-printed silk based hydrogel scaffold with hierarchical pores
One of the latest trends in the regenerative medicine is the development of 3D-printing hydrogel scaffolds with biomimetic structures for tissue regeneration and organ reconstruction. However, it has been practically difficult to achieve a highly biomimetic hydrogel scaffolds with proper mechanical properties matching the natural tissue. Here, bacterial cellulose nanofibers (BCNFs) were applied to improve the structural resolution and enhance mechanical properties of silk fibroin (SF)/gelatin composite hydrogel scaffolds. The SF-based hydrogel scaffolds with hierarchical pores were fabricated via 3D-printing followed by lyophilization. Results showed that the tensile strength of printed sample increased significantly with the addition of BCNFs in…
3D Bioprinting of Cellulose with Controlled Porous Structures from NMMO
In the present work, dissolved cellulose has been 3D bioprinted to produce complex structures with ordered interconnected pores. The process consists of the dissolution of dissolving pulps in N-methylmorpholine-N-oxide (NMMO), multilayered dispensing, water removal of NMMO and freeze-drying. 3D bioprinting of cellulose/NMMO solution at 70 ℃ was analogous to that of thermoplastics by the process of melting and solidification to produce cellulose/NMMO objects in the solid form. However, 3D bioprinting of cellulose/NMMO solution at a higher temperature than 70 ℃ produced cellulose/NMMO objects in the gel form. Cellulose was regenerated by water; thereafter, freeze-drying treatment maintained the 3D bioprinted structures…
3D Printing of Antimicrobial Alginate/Bacterial-Cellulose Composite Hydrogels by Incorporating Copper Nanostructures
Novel antimicrobial 3D-printed alginate/bacterial-cellulose hydrogels with in situ-synthesized copper nanostructures were developed having improved printability. Prior to 3D printing, two methods were tested for the development of the alginate hydrogels: (a) ionic cross-linking with calcium ions followed by ion exchange with copper ions (method A) and (b) ionic cross-linking with copper ions (method B). A solution containing sodium borohydride, used as a reducing agent, was subsequently added to the hydrogels, producing in situ clusters of copper nanoparticles embedded in the alginate hydrogel matrix. The method used and concentrations of copper and the reducing agent were found to affect the stability…