3D Bioplotter Research Papers
Enhanced In Vivo Vascularization of 3D-Printed Cell Encapsulation Device Using Platelet-Rich Plasma and Mesenchymal Stem Cells
The current standard for cell encapsulation platforms is enveloping cells in semipermeable membranes that physically isolate transplanted cells from the host while allowing for oxygen and nutrient diffusion. However, long-term viability and function of encapsulated cells are compromised by insufficient oxygen and nutrient supply to the graft. To address this need, a strategy to achieve enhanced vascularization of a 3D-printed, polymeric cell encapsulation platform using platelet-rich plasma (PRP) and mesenchymal stem cells (MSCs) is investigated. The study is conducted in rats and, for clinical translation relevance, in nonhuman primates (NHP). Devices filled with PRP, MSCs, or vehicle hydrogel are subcutaneously…
Improvement of Vascularization of PLGA Scaffolds by Inosculation of In Situ-Preformed Functional Blood Vessels With the Host Microvasculature
Objective: We analyzed, in vivo, whether the establishment of blood supply to implanted scaffolds can be accelerated by inosculation of an in situ-preformed microvascular network with the host microvasculature. Background: A rapid vascularization is crucial for the survival of scaffold-based transplanted tissue constructs. Methods: Poly-lactic-glycolic acid scaffolds were implanted into the flank of balb/c or green fluorescent protein (GFP)-transgenic mice for 20 days to create in situ a new microvascular network within the scaffolds. The prevascularized scaffolds were then transferred into the dorsal skinfold chamber of isogeneic recipient mice. Nonvascularized poly-lactic-glycolic acid scaffolds served as controls. Vascularization, blood perfusion, and…